A reaction occurs between the two gases Chlorine monofluoride (ClF) and Fluorine (F₂) when they are added together and as a result of the reaction a compound named, Chlorine trifluoride (ClF₃) is formed.
The reaction which occurs by addition of Chlorine monofluoride (ClF) and Fluorine (F₂) is as follows -
ClF (g) + F₂ (g) = ClF₃ (l)
When one molecule of Chlorine monofluoride (ClF) reacts with one molecule of Fluorine (F₂) gas, both the gases react together to form one molecule of Chlorine trifluoride (ClF₃) which is a liquid. Therefore, the above reaction is already balanced.
Chlorine trifluoride (ClF₃) is a greenish-yellow liquid which acts as an important fluorinating agent and is also an interhalogen compound (compounds that are formed by mixing two different halogen compounds together). Other than it's liquid state ClF₃ also can exist as a colorless gas. This compound ClF₃ is a very toxic, very corrosive and powerful oxidizer used as an igniter and propellent in rockets.
Learn more about Chlorine monofluoride (ClF) here-
brainly.com/question/17129650
#SPJ4
I’m pretty sure it’s A sorry if wrong
The pressure will continue to build up eventually causing a release of pressure or an explosion.
Answer:
Under high temperatures and low pressure, gases behave the most ideal.
Explanation:
Low pressure reduces the effect of the finite size of real particles by increasing the volume around each particle, and a high temperature gives enough kinetic energy to the particles to better overcome the attractions that exist between real particles. (Prevents sticking.)
In summary, real gases behave more like ideal gases when they are far away from a phase boundary, (condensation or freezing).