Amines are derivatives of
Ammonia (NH₃) in which atleast one hydrogen atom is replaced by an alkyl group. Amines are further classifies as;
Primary Amines: In primary amines the nitrogen atom is attached to two hydrogen atoms and one alkyl group.
Secondary Amines: In secondary amines the nitrogen atom is attached to two alkyl groups and one hydrogen atom.
Tertiary Amines: In tertiary amines the nitrogen atom is attached to three alkyl groups, hence it has no hydrogen atom.
Below are three isomers of tertiary amines with molecular formula
C₅H₁₃N.
Answer:
B. The pressure has increased
Explanation:
Answer:
Start and end times; distance run.
Step-by-step explanation:
Average speed = distance/time.
Kaila should record the distance run, the time she started, and the time she ended her run.
The difference between the start and end times gives the time for the run.
If she inserts her numbers into the formula, she will get her average running speed.
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ