Subtract it's atomic number from it's mass number
Answer:
The elements in each group have the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons. They are the electrons involved in chemical bonds with other elements. Every element in the first column (group one) has one electron in its outer shell.
Explanation:
D
A- Harvard university professor
Answer:
The correct answer is option E.
Explanation:
Structures for the reactants and products are given in an aimage ;
Number of double bonds in oxygen gas molecule = 1
Number of double bonds in nitro dioxide gas molecule = 1
Number of single bond in in nitro dioxide gas molecule = 1
Number of triple bonds in nitrogen gas molecule = 1

![\Delta H=[2 mol\times \Delta H_{f,NO_2}]-[1 mol\times \Delta H_{f,N_2}-2 mol\times \Delta H_{f,O_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B2%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CNO_2%7D%5D-%5B1%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CN_2%7D-2%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CO_2%7D%5D)

(pure element)
(pure element )

The enthalpy of the given reaction is 15.86 kcal.
The reaction will produce 12.1 g Ag₂S.
<em>Balanced equation</em> = 2Ag + S ⟶ Ag₂S
<em>Mass of Ag₂S</em> = 10.5 g Ag × (1 mol Ag/107.87 g Ag) × (1 mol Ag₂S/2 mol Ag)
× (247.80 g Ag₂S/1 mol Ag₂S) = 12.1 g Ag₂S