Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
Answer:
the property of absorbing light of short wavelength and emitting light of longer wavelength.
Explanation:
YW
Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana
= 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey
= 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 +
(
R)² +
R² ]w
m/2 × ω₀ = [ m/2 +
(
)² +
]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s