Answer:
angular momentum, 
Explanation:
Given that,
Mass of the woman, m = 50 kg
Angular velocity of the disk, 
Mass of the disk, m' = 2670 kg
Radius of the disk, R = 4 m
We need to find the magnitude of the total angular momentum of the woman–disk system. The moment of inertia of the system is equal to the sum of moment of inertia of women and the moment off inertia of the disk.

The angular momentum is given by :

or

So, the magnitude of the total angular momentum of the woman–disk system is
. Hence, this is the required solution.
The density of the nugget is
and is made of gold
Explanation:
The density of an object can be calculated as

where
d is the density
m is the mass
V is the volume of the object
We have to note that density of an object actually depends on the material the object is made of (therefore, two objects made of the same material can have different mass and different volume, but they have same density).
For the nugget in this problem, we have:
mass: m = 38 g
volume: 
So, its density is

And by looking at the table, we see that this value corresponds approximately to the density of gold, so the nugget is made of gold.
Learn more about density:
brainly.com/question/5055270
brainly.com/question/8441651
#LearnwithBrainly
Answer:
The force per unit length (N/m) on the top wire is 16.842 N/m
Explanation:
Given;
distance between the two parallel wire, d = 38 cm = 0.38 m
current in the first wire, I₁ = 4.0 kA
current in the second wire, I₂ = 8.0 kA
Force per unit length, between two parallel wires is given as;

where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
Substitute the given values in the above equation and calculate the force per unit length

Therefore, the force per unit length (N/m) on the top wire is 16.842 N/m
Answers:
a) 5400000 J
b) 45.92 m
Explanation:
a) The kinetic energy
of an object is given by:

Where:
is the mass of the train
is the speed of the train
Solving the equation:

This is the train's kinetic energy at its top speed
b) Now, according to the Conservation of Energy Law, the total initial energy is equal to the total final energy:


Where:
is the train's initial kinetic energy
is the train's initial potential energy
is the train's final kinetic energy
is the train's final potential energy, where
is the acceleration due gravity and
is the height.
Rewriting the equation with the given values:

Finding
:
Answer:
20 cm to the right of the center or 20+50 = 70 cm from the left side.
Explanation:
The length of meter stick is 1 m = 100 cm
Balance point on 50 cm
From the center the 20 N weight is 50-20 = 30 cm
Torque is obtained when force is multiplied with the distance
As the force is conserved we have

The distance will be 20 cm to the right of the center or 20+50 = 70 cm from the left side.