Answer:
The longest wavelength of light is 666.7 nm
Explanation:
The general form of the grating equation is
mλ = d(sinθi + sinθr)
where;
m is third-order maximum = 3
λ is the wavelength,
d is the slit spacing (m/slit)
θi is the incident angle
θr is the diffracted angle
Note: at longest wavelength, sinθi + sinθr = 1
λ = d/m
d = 1/500 slits/mm
λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm
Therefore, the longest wavelength of light is 666.7 nm
What object do you need to match
The answer is 4,045.1 meters
The convection currents in the mantle caused the crust on top to break apart & go different directions.
Based on the given, this is probably a gravitational potential energy problem (PEgrav). The formula for PEgrav is:
PEgrav = mgh
Where:
m = mass (kg)
g = acceleration due to gravity
h = height (m)
With this formula you can derive the formula for your unknown, which is mass. First put in what you know and then solve for what you do not know.

![30J=m(10)(10[tex] \frac{30}{100} =m](https://tex.z-dn.net/?f=30J%3Dm%2810%29%2810%5Btex%5D%20%5Cfrac%7B30%7D%7B100%7D%20%3Dm)
)[/tex]
Do operations that you can with what is given first.

Transpose the 100 to the other side of the equation. Do not forget that when you transpose, you do the opposite operation.
m = 0.30kg