1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
15

The temperature of 2.0 g of helium is increased at constant volume by ΔT. What mass of oxygen can have its temperature increased

by the same amount at constant volume using the same amount of heat?
Physics
1 answer:
gavmur [86]3 years ago
8 0

Answer:

m = 9.6 g

Explanation:

Thermal energy given to helium gas at constant volume is given as

Q = nC_v \Delta T

so here we have

C_v = \frac{3}{2}R

n = moles

n = \frac{2}{4} = 0.5

so we have

Q = \frac{3}{2}R(0.5)\Delta T

now we know that

for oxygen gas we have

C_v = \frac{5}{2}R

for same amount of heat we have

Q = nC_v \Delta T'

\frac{3}{2}R(0.5)\Delta T = \frac{m}{32} (\frac{5R}{2}) \Delta T

m = \frac{0.75 \times 32}{2.5}

m = 9.6 g

You might be interested in
Water is leaking out of an inverted conical tank at a rate of 1.5 cm3 /min at the same time that water is being pumped into the
iris [78.8K]

Answer:

a) Check Explanation

b) Check Explanation

c) The rate at which water is being pumped into the tank = 2.631 cm³/min

Explanation:

Let the rate of flow of water into the tank be k cm³/min

a) The image of the conical tank is presented in the attached image

Note, the radius and height of a cone are related through the similar triangles principle.

As shown in the attached image, it is evident that

r/h = 3/10

r = 3h/10 = 0.3 h

b) The quantities given in the problem.

- Shape of the tank, conical tank, Hence volume of the tank = πr²h/3

- total height of the tank, H = 10 cm

- Radius of the tank at the top, R = D/2 = 6/2 = 3 cm

- rate at which water is leaking from the tank = 1.5 cm³/min

- water is being pumped into the tank at constant rate of k cm³/min

- As at height of water, h = 2 cm, the rate of rise in water level = 1 cm/min

c) volume of the tank at any time = πr²h/3

Rate of change in the volume of water in the tank = (rate of flow into the tank) - (Rate of water flow out of the tank)

dV/dt = k - 1.5

V = πr²h/3 and r = 0.3 h, r² = 0.09 h²

V = 0.03πh³

dV/dt = (dV/dh) × (dh/dt)

dV/dh = 0.09π h²

dV/dt = 0.09π h² (dh/dt)

dV/dt = k - 1.5

0.09π h² (dh/dt) = k - 1.5

But at h = 2 cm, (dh/dt) = 1.0 cm/min

0.09π h² (dh/dt) = k - 1.5

0.09π 2² (1) = k - 1.5

k - 1.5 = 1.131

k = 1.5 + 1.131 = 2.631 cm³/min

5 0
3 years ago
Water on the kitchen floor at home is considered a safety hazard.
svp [43]
Yes it is, cause someone could slip and accidentally stab themselves
6 0
2 years ago
Read 2 more answers
Pls someone help 10points!!!
GREYUIT [131]

Answer:

it is 45

Explanation:

3 0
3 years ago
The distance between the earth and sun is 1.5 x 108 kilometers and the speed of light is 3.00 x 108 meters per second. Calculate
butalik [34]

Answer:

time = 8.3333 minutes.

Explanation:

distance between earth and sun = 1.5 * 10^{8}km

speed of light = 3* 10^{8}m/s

convert the distance unit from km to m so we can have uniform units.

distance between earth and sun = 1.5 *10^{8}*1000m

distance between earth and sun = 1.5 * 10^{11}m

speed = distance /time

time = distance / speed

time = \frac{1.5*10^{11} }{3*10^{8} }

= 0.5*10^{3}

time =500 sec

time = 500/60 minutes

time = 8.3333 minutes.

3 0
3 years ago
A sinusoidal wave traveling on a string has a period of 0.20 s, a wavelength of 32 cm, and an amplitude of 3 cm. The speed of th
Finger [1]

Answer:

v = 1.6 \frac{m}{s} *\frac{100cm}{1m}= 160 \frac{cm}{s}

Explanation:

If we have a periodic wave we need to satisfy the following basic relationship:

v = \lambda f

From the last formula we see that the velocity is proportional fo the frequency.

For this case we have the following info given by the problem:

T= 0.2 s, \lambda =32 cm* \frac{1m}{100cm} =0.32 m, A= 3cm*\frac{1m}{100 cm}=0.03 m

We know that the frequency is the reciprocal of the period so we have this formula:

f = \frac{1}{T}

And if we replace we got:

f =\frac{1}{0.2 s}= 5Hz

Now since we have the value for the wavelength we can find the velocity like this:

v = 0.32 m * 5Hz = 1.6 \frac{m}{s}

And if we convert this into cm/s we got:

v = 1.6 \frac{m}{s} *\frac{100cm}{1m}= 160 \frac{cm}{s}

6 0
3 years ago
Other questions:
  • Two 10-cm-diameter metal plates 1.0 cm apart are charged to {12.5 nC. They are suddenly connected together by a 0.224-mm- diamet
    11·1 answer
  • Una masa de 0,5 kg está sobre una pendiente inclinada 20º sujeta mediante una cuerda paralela a la pendiente que impide que desl
    12·1 answer
  • A man walks 600 m [E47°N], then 500 m [N38°W], then 300 m [W29°S], and finally 400 m [S13°E]. Find his resultant displacement.
    13·1 answer
  • An airplane wing is designed to make the air move
    8·1 answer
  • An owl is carrying a vole in its talons, flying in a horizontal direction at 8.3 m/s while 282 m above the ground. The vole wigg
    14·1 answer
  • Which statement best supports the claim that there is such a thing as a perfect pitch?
    10·1 answer
  • A ball is thrown upwards with an initial velocity of 25.o m/s, what is the velocity of the ball at 11.9 m from the ground?
    6·1 answer
  • Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126 Km. Si el más lento va a 42 Km/h, calcular
    7·1 answer
  • Give an example of a change that the ecosystem was not able to recover from. Can you explain why? (gizmo)
    6·1 answer
  • A rubber bullet of mass m is fired from a rifle into a stationary block of 25 m. The bullet remains in the block and both the bu
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!