When heat or any other kind of energy move from one place
to another, conduction and convection need some material stuff
along the way, otherwise they don't happen.
There is no material stuff between the Sun and the Earth, so
the Sun's energy reaches us by radiation.
Answer:
3 m/s
Explanation:
We'll begin by calculating the change in displacement of the jogger. This can be obtained as follow:
Initial displacement (d₁) = 4 m
Final displacement (d₂) = 16 m
Change in displacement (Δd) =?
Δd = d₂ – d₁
Δd = 16 – 4
Δd = 12 m
Finally, we shall determine the determine the average velocity. This can be obtained as follow:
Change in displacement (Δd) = 12 m
Time (t) = 4 s
Velocity (v) =?
v = Δd / t
v = 12 / 4
v = 3 m/s
Thus, the average velocity of the jogger is 3 m/s
Answer:
The solid sphere will reach the bottom first.
Explanation:
In order to develop this problem and give it a correct solution, it is necessary to collect the concepts related to energy conservation. To apply this concept, we first highlight the importance of conserving energy so we will match the final and initial energies. Once this value has been obtained, we will concentrate on finding the speed, and solving what is related to the Inertia.
In this way we know that,


We know as well that the lineal and angular energy are given by,

And the tangential kinetic energy as

Where
Replacing

Re-arrange for v,

We have here three different objects: solid cylinder, hollow pipe and solid sphere. We need the moment inertia of this objects and replace in the previous equation found, then,
For hollow pipe:




For solid cylinder:




For solid sphere,




Then comparing the speed of the three objects we have:


Answer: 11,100 ft/s^2
1) Constant acceleration=> uniformly accelerated motion.
2) Formula for uniformly accelerated motion:
Vf = Vo + at
3) Data:
Vo = 1,100 ft/s
a = 1,000 ft/s^2
t = 10.0 s
4) Solution:
Vf = 1,100 ft/s + 1,000 ft/s^2 * 10.0 s = 1,100 ft/s + 10,000 ft/s
Vf = 11,100 ft/s
Answer:
Velocity
Explanation:
The rate of change in position at a given point in time is called velocity.