<span>Debido a que la fuerza es constante, a medida que la masa aumenta, la aceleración disminuye. Por lo tanto, la mayor aceleración sería a1.</span><span>Utilicé Google traductor, lol. Sin embargo, espero que esto ayude.</span>
Answer:
its the last question
Explanation:
Thats because erosion takes away stuff
Answer:
Velocity (magnitude) is 98.37 m/s
Explanation:
We use the vertical component of the initial velocity, which is:

Using kinematics expression of vertical velocity (in y direction) for an accelerated motion (constant acceleration, which is gravity):

Now we need to find
as a function of
. We use the horizontal velocity, which is always the same as follow:

We know the angle at 3 seconds:

Substitute
in
and then solve for 

With this expression we go back to the kinematic equation and solve it for initial speed

The answer is B, 1/4 of the cake
Swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
To find more, we have to study about the spectroscopic methods.
<h3>
What is homonuclear decoupling and broadband excitation?</h3>
- A thorough understanding of the evolution of spin systems during these pulses is crucial for many of these applications since it not only helps to describe how procedures work but also makes new methodologies possible.
- Broadband inversion, refocusing, and excitation employing these pulses are some of the most popular applications in NMR, ESR, MRI, and in vivo MRS in magnetic resonance spectroscopy.
- A generic expression for chirped pulses will be presented in this study, along with numerical methods for calculating the spin dynamics during chirped pulses using solutions along with extensive examples.
Thus, we can conclude that, the swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
Learn more about the broadband excitation here:
brainly.com/question/19204110
#SPJ4