Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
Answer:
you are making an observation that uses numbers.
Explanation:
Answer:
D. Strong nuclear forces hold the nucleus of an atom together. Weak nuclear forces are involved when certain types of atoms break down.
Explanation:
Answer: find the answer in the explanation.
Explanation:
From the experiment set up in the diagram, the pointer is resting on the drinking straw while the rod is resting on the drinking straw.
When the rod is being heated through the bursen burner, there will be linear expansion in the rod. As the rod increases its length, this causes the drinking straw to roll and thereby causing the pointer to rotate.
The pointer therefore rotates because of the thermer expansion that happen in the rod due to the heat from the bursen burner.
I believe it is speed.
Hope this helps!