1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marin [14]
3 years ago
14

Any change in the cross section of the vocal tract shifts the individual formant frequencies, the direction of the shift dependi

ng on just where the change in area falls along the standing wave. Constriction of the vocal tract at a place where the standing wave of a formant exhibits minimum-amplitude pressure oscillations generally causes the formant to drop in frequency; expansion of the tract at those same places raises the frequency. Three other major tools for changing the shape of the tract in such a way that the frequency of a particular formant is shifted in a particular direction are the jaw, the body of the tongue and the tip of the tongue. Moving the various articulatory organs in different ways changes the frequencies of the two lowest formants over a considerable range [18].
One way to increase formant frequency is to ________ the vocal tract at a place where the standing wave of a formant frequency exhibits minimum-amplitude pressure oscillations.

a. Stretch
b. Vibrate
c. Contract
d. Expand
Physics
1 answer:
Leona [35]3 years ago
3 0

Answer:

The correct answer is option D.

Explanation:

It is stated in the question that constriction of the vocal tract at a place where the standing wave of a formant exhibits minimum-amplitude pressure oscillations generally causes the formant to drop in frequency so to increase formant frequency, the vocal should expand where the standing wave of a formant exhibits minimum-amplitude pressure oscillations. The answer is D.

I hope this helps.

You might be interested in
Which of the following properties of materials does NOT affect resistance?
Shalnov [3]

Answer:

B thickness

Explanation:

thickness

4 0
3 years ago
What kind of image does the lens in a camera produce? real and upside down real and right-side up virtual and upside down virtua
Vlada [557]

Answer:

<u>real and upside down </u>

Explanation:

Lens of a camera gathers light and focuses it on the light detector or film strip. <u>A real and inverted (upside -down) image is formed. </u>This image is then stored and processed and inverted. Thereafter we see an upright image. A chemical reaction on the film strip stores the image. In a digital lens, a light detector such as CCD stores the image.

7 0
3 years ago
Read 2 more answers
Most of the life is spent in a cell development called?
tatuchka [14]
It's called cellular differentiation. I think.
6 0
3 years ago
Read 2 more answers
A marble resting near the edge of .90 m high table is given an initial horizontal speed of 1.24 m/s. What will be it’s horizonta
Maru [420]

Answer:

0.53 m

Explanation:

First of all, we have to consider the vertical motion of the ball, in order to find the time it takes for the marble to reach the ground. The initial height is h=0.90 m, the initial vertical velocity is zero, while the acceleration is g=-9.81 m/s^2, so the vertical position at time t is given by

y(t)=h-\frac{1}{2}gt^2

By demanding y(t)=0, we find the time t at which the ball reaches the ground:

0=h-\frac{1}{2}gt^2

t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(0.9 m)}{9.81 m/s^2}}=0.43 s

Now we can find the horizontal range of the marble: we know the initial horizontal speed (v=1.24 m/s), we know the total time of the motion (t=0.43 s), and since the horizontal speed is constant, the total distance traveled on the horizontal direction is

x=vt=(1.24 m/s)(0.43 s)=0.53 m

8 0
3 years ago
Two stones are launched from the top of a tall building. One stoneis thrown in a direction 30.0^\circ above the horizontal with
Butoxors [25]

Answer:

Part A)

t(1) > t(2), the stone thrown 30 above the horizontal spends more time in the air.

Part B)

x(f1) > x(f2), the first stone will land farther away from the building.

Explanation:

<u>Part A)</u>

Let's use the parabolic motion equation to solve it. Let's define the variables:

  • y(i) is the initial height, it is a constant.
  • y(f) is the final height, in our case is 0
  • v(i) is the initial velocity (v(i)=16 m/s)
  • θ1 is the first angle, 30°
  • θ2 is the first angle, -30°

For the first stone

y_{f1}=y_{i1}+v*sin(\theta_{1})t_{1}-0.5gt_{1}^{2}              

0=y_{i1}+16*sin(30)t_{1}-0.5*9.81*t_{1}^{2}

0=y_{i1}+8t_{1}-4.905*t_{1}^{2} (1)  

For the second stone  

0=y_{i2}+16*sin(-30)t_{2}-4.905t_{2}^{2}    

0=y_{i2}-8t_{2}-4.905t_{2}^{2} (2)            

 

If we solve the equation (1) we will have:

t_{1}=\frac{-8\pm \sqrt{64+19.62*y_{i}}}{-9.81}  

We can do the same procedure for the equation (2)

t_{1}=\frac{8\pm \sqrt{64+19.62*y_{i}}}{-9.81}

We can analyze each solution to see which one spends more time in the air.

It is easy to see that the value inside the square root of each equation is always greater than 8, assuming that the height of the building is > 0. Now, to get positive values of t(1) and t(2) we need to take the negative option of the square root.

Therefore, t(1) > t(2), it means that the stone thrown 30 above the horizontal spends more time in the air.

<u>Part B)</u>

We can use the equation of the horizontal position here.

<u>First stone</u>

x_{f1}=x_{i1}+vcos(30)t_{1}

x_{f1}=0+13.86*t_{1}

x_{f1}=13.86*t_{1}

<u>Second stone</u>

x_{2}=x_{i2}+vcos(-30)t_{2}

x_{1}=0+13.86*t_{1}

x_{1}=13.86*t_{2}

Knowing that t(1) > t(2) then x(f1) > x(f2)

Therefore, the first stone will land farther away from the building.

They land at different points at different times.

I hope it helps you!

3 0
3 years ago
Other questions:
  • Find the wavelength of the ultrasonic wave emitted by a bat if it has a frequency of 4.0 * 10^4 Hz.
    14·2 answers
  • A 100-turn coil with an average radius of 0.04 m is placed in a uniform magnetic field so that ϕ = 60°. The strength of the fiel
    11·2 answers
  • There is a skier at the top of a ski slope. The skier has potential energy. What gives the skier his potential energy? A. his sp
    7·2 answers
  • A gull is flying horizontally 10.80 m above the ground at 6.00 m/s. The bird is carrying a clam in its beak and plans to crack t
    5·1 answer
  • The former soviet union launched the first artificial earth satellite. What is the name of this satelitte?
    8·1 answer
  • Application: Economics. A vector ~p = h150, 225, 375i represents the price in dollars of certain models of bicycles sold by a bi
    5·1 answer
  • A freighter carrying a cargo of uranium hexafluoride sank in the English Channel in late August 1984. The cargo of uranium hexaf
    8·1 answer
  • The comparison between work output and work input is
    5·2 answers
  • Would you expect the density of graphite and diamond to be the same
    7·1 answer
  • Dimensional formula of Amplitude ?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!