Answer:
H2O2
Explanation:
it is made up of Oxygen and Hydrogen. Unlike water which is H2O Hydrogen peroxide is made up of 2 oxygen atoms
Considering the ideal gas law, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
<h3>Definition of ideal gas</h3>
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
<h3>Ideal gas law</h3>
An ideal gas is characterized by absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of gases:
P×V = n×R×T
<h3>Volume of gas</h3>
In this case, you know:
- P= 1.50 atm
- V= ?
- n= 500 g×= 11.36 moles, being 44 the molar mass of CO₂
- R= 0.082
- T= 25 C= 298 K (being 0 C=273 K)
Replacing in the ideal gas law:
1.50 atm×V = 11.36 moles×0.082 × 298 K
Solving:
V= (11.36 moles×0.082 × 298 K) ÷ 1.50 atm
<u><em>V= 184.899 L</em></u>
Finally, the volume of gas produced at 25.0 °C and 1.50 atm is 184.899 L.
Learn more about the ideal gas law:
<u>brainly.com/question/4147359?referrer=searchResults</u>
Answer:
1.75M
Explanation:
molarity = number of moles of solute/ number of L of solution =
=0.35 mol/0.2L = 1.75 mol/L = 1.75 M
Explanation:
substance Q could be <em><u>oxygen (O2)</u></em>
substance R could be <em><u>carbon</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>o</u></em><em><u>x</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u> </u></em><em><u>(</u></em><em><u>C</u></em><em><u>O</u></em><em><u>2</u></em><em><u>)</u></em>
Answer:
Here is your answer mate :D