75 units squared. separate the shapes into a rectangle and triangle, find the area of each, and add together
Answer:
1st picture: (0,4)
The lines intersect at point (0,4).
2nd picture: Graph D
2x ≥ y - 1
2x - 5y ≤ 10
Set these inequalities up in standard form.
y ≤ 2x + 1
-5y ≤ 10 - 2x → y ≥ -2 + 2/5x → y ≥ 2/5x - 2
When you divide by a negative number, you switch the inequality sign.
Now you have:
y ≤ 2x + 1
y ≥ 2/5x - 2
Looking at the graphs, you first want to find the lines that intersect the y-axis at (0, 1) and (0, -2).
In this case, it is all of them.
Next, you would look at the shaded regions.
The first inequality says the values are less than or equal to. So you look for a shaded region below a line. The second inequality says the values are greater than or equal to. So you look for a shaded region above a line.
That would mean Graph B or D.
Then you look at the specific lines. You can see that the lower line is y ≥ 2/5x - 2. You need a shaded region above this line. You can see the above line is y ≤ 2x + 1. You need a shaded region below this line. That is Graph D.
Answer:
Step-by-step explanation:
hypotenuse=2*AB
where AB is the smallest side.
Take AB as the base .
Draw a perpendicular at B.
A as the center and cut an arc AC=2 AB
Join AC.
CAB is the reqd. triangle.
Answer: 
Step-by-step explanation:
<h3>
The complete exercise is: "Line segment YV of rectangle YVWX measures 24 units. What is the length of line segment YX?"</h3><h3>
The missing figure is attached.</h3>
Since the figure is a rectangle, you know that:

Notice that the segment YV divides the rectangle into two equal Right triangles.
Knowing the above, you can use the following Trigonometric Identity:

You can identify that:

Therefore, in order to find the length of the segment YX, you must substitute values into
and then you must solve for YX.
You get that this is:

27, 36, 45...all have factors of 9 and r greater then 20