Answer: height of building = 18.8m
Explanation: The question is a projectile motion, a two dimensional motion with a vertical constant acceleration (g = - 9.8m/s²) and a constant horizontal velocity (thus making horizontal component of acceleration zero).
From the question, distance between bottom of building and where the object lands = 64m, initial velocity for throwing the object = 19.6m/s
The horizontal range formulae is given as
d= vt
Where d= horizontal range = 64m, v = initial velocity of throw.
64 = 19.6 × t
t = 64/ 19.6
t = 3.265 s.
Height (h) of the building is gotten by using the formulae
h =vt - 1/2gt²
h = (19.6×3.265) - 1/2×9.8×(3.265)²
h = 71.05 - (104.47/2)
h = 71.05 - 52.235
h = 18.8m
Answer:
C) If an ice cube is placed into a boiling water, then it will melt in less than 2 minutes.
Explanation:
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.
Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.
A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.
To know more about acceleration refer to: brainly.com/question/14468548
#SPJ4
<span>No. Work is not done if you carry a book across the room
at a constant velocity?
The force applied is perpendicular to the direction of motion. (C)</span>