2: It's not just the capillary action, but the pull from transpiration (the evaporation of water from the tree) that is used to pull water up from the roots.
<span>The second question needs context. Strong bonds alone won't cause tension. I don't see how adhesion is different. High vapour pressure could do it, but it's the difference in pressures that'd cause tension (and the resistance of that pressure by the surface). So, a low and high pressure would be needed. Poorly worded question :( </span>
<span>1: "Adhesion is the tendency of certain dissimilar molecules to cling together due to attractive forces." [1] </span>
<span>3: The other three answere would not work. Think of a boat. </span>
<span>3: If you push gas, it will be compressed(get smaller). If you push liquid it will push something else. Thus, liquids are good for transferring force. This is a hydraulic system.</span>
Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
The voltage<span> difference between the two plates can be expressed in terms of the </span>work<span> done on a positive test charge q when it moves from the positive to the negative plate.</span><span>
E=V/d
where V is the voltage and d is the distance between the plates.
So,
E=6.0V/1mm= 6000 V/m. The electric field between the plates is 6000 V/m.</span>