1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
2 years ago
10

Johns bill at a restaurant was $62.50 before tax the tax was 8%.he then added a tip of 20% if the amount before tax.how much did

he pay
Mathematics
1 answer:
Sonbull [250]2 years ago
7 0
You need to calculate the tip and tax seperately, then add everything together. The tax is 8%, which can be found with the equation $62.50 x .08 = $5. The tip, which was added before tax, can be found with the equation 62.50 x .20 = $12.50. To find the total amount John paid, add all the meal price, tax, and tip together. $62.50 + $5 + $12.50 = $80
You might be interested in
Brady made a scale drawing of a rectangular swimming pool on a coordinate grid. The points (-20, 25), (30, 25), (30, -10) and (-
djverab [1.8K]

Answer:

Length = 50 units

width = 35 units

Step-by-step explanation:

Let A, B, C and D be the corner of the pools.

Given:

The points of the corners are.

A(x_{1}, y_{1}})=(-20, 25)

B(x_{2}, y_{2}})=(30, 25)

C(x_{3}, y_{3}})=(30, -10)

D(x_{4}, y_{4}})=(-20, -10)

We need to find the dimension of the pools.

Solution:

Using distance formula of the two points.

d(A,B)=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}----------(1)

For point AB

Substitute points A(30, 25) and B(30, 25) in above equation.

AB=\sqrt{(30-(-20))^{2}+(25-25)^{2}}

AB=\sqrt{(30+20)^{2}}

AB=\sqrt{(50)^{2}

AB = 50 units

Similarly for point BC

Substitute points B(-20, 25) and C(30, -10) in equation 1.

d(B,C)=\sqrt{(x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}}

BC=\sqrt{(30-30)^{2}+((-10)-25)^{2}}

BC=\sqrt{(-35)^{2}}

BC = 35 units

Similarly for point DC

Substitute points D(-20, -10) and C(30, -10) in equation 1.

d(D,C)=\sqrt{(x_{3}-x_{4})^{2}+(y_{3}-y_{4})^{2}}

DC=\sqrt{(30-(-20))^{2}+(-10-(-10))^{2}}

DC=\sqrt{(30+20)^{2}}

DC=\sqrt{(50)^{2}}

DC = 50 units

Similarly for segment AD

Substitute points A(-20, 25) and D(-20, -10) in equation 1.

d(A,D)=\sqrt{(x_{4}-x_{1})^{2}+(y_{4}-y_{1})^{2}}

AD=\sqrt{(-20-(-20))^{2}+(-10-25)^{2}}

AD=\sqrt{(-20+20)^{2}+(-35)^{2}}

AD=\sqrt{(-35)^{2}}

AD = 35 units

Therefore, the dimension of the rectangular swimming pool are.

Length = 50 units

width = 35 units

7 0
3 years ago
Suppose X and Y have joint density f(x,y)=1 for 0
SashulF [63]

∫¹₀ min (1, n/y)dy = ∫ⁿ₀ (1, n/y)dn + ∫¹n min (1, n/y) dy

Hope this helps


8 0
3 years ago
A quality control inspector tested 235 CDs and found 8 defective
antiseptic1488 [7]

Answer:

235 C D s =

8 =

Step-by-step explanation:

7 0
3 years ago
Se quiere construir un muro de 4 m de alto, 12 m de largo y 10 cm de espesor. ¿Cuántos ladrillos de 8 cm de alto, 20 cm de largo
Llana [10]

Answer:

3000

Step-by-step explanation:

Let's start by finding the volume of the wall. The volumen of the wall can be considered as the volume of a rectangular prism. The volume of a rectangular prism is given by:

V_w=w*l*h\\\\Where:\\\\w=Width=10cm=0.1m\\l=Length=12m\\h=Height=4m

So the volume of the wall is:

V_w=0.1*12*4=4.8m^3

Now, we can find the volume of the brick using the same method since a brick can be considered as a rectangular prism as well:

V_b=w*l*h\\\\For\hspace{3}the\hspace{3}brick\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Hence:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

In order to know how many bricks are required to build the wall, we just need to fill the wall volume with the number of bricks of this volume. So:

V_w=nV_b\\\\Where\\\\n=Number\hspace{3}of\hspace{3}bricks

Solving for n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Therefore, we need 3000 bricks to build that wall.

Translation:

Comencemos por encontrar el volumen del muro. El volumen del muro puede considerarse como el volumen de un prisma rectangular. El volumen de un prisma rectangular viene dado por:

V_w=w*l*h\\\\Donde:\\\\w=Espesor=10cm=0.1m\\l=Largo=12m\\h=Alto=4m

Entonces el volumen del muro es:

V_w=0.1*12*4=4.8m^3

Ahora, podemos encontrar el volumen del ladrillo utilizando el mismo método, ya que un ladrillo también puede considerarse como un prisma rectangular:

V_b=w*l*h\\\\Para\hspace{3}el\hspace{3}ladrillo\\\\w=10cm=0.1m\\l=20cm=0.2m\\h=8cm=0.08m

Por lo tanto:

V_b=(0.1)*(0.2)*(0.08)=0.0016m^3

Para saber cuántos ladrillos se requieren para construir el muro, solo necesitamos llenar el volumen del muro con la cantidad de ladrillos de este volumen. Entonces:

V_w=nV_b\\\\Donde\\\\n=Numero\hspace{3}de\hspace{3}ladrillos

Resolviendo para n:

n=\frac{V_w}{V_b} =\frac{4.8}{0.0016} =3000

Por lo tanto, necesitamos 3000 ladrillos para construir ese muro.

4 0
3 years ago
Which expression is equivalent to the following complex fraction?
andrezito [222]

Answer:

The same thing but with y

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the best to buy?
    8·1 answer
  • 7x-5y=-15 and -14x+7y=0 Solve by elimination
    12·1 answer
  • How do you graph a negative slope when it’s in slope intercept form
    13·1 answer
  • Multi-step)<br> -3(y + 7) + 8 = -28<br> Unit<br> Mrs.<br> Each<br> How<br> Answer
    6·1 answer
  • Explain how you solved 42-16
    6·1 answer
  • 18<br> 8<br> X<br> 12<br> What is the value of x?
    10·1 answer
  • I don’t know whether to add or subtract
    15·1 answer
  • Complete the equation…<br><br> Picture is included <br><br> Please answer!! No links please!!!!
    6·1 answer
  • Help me guys l don't know this ??????​
    11·2 answers
  • The value of y varies directly with x, and y = 18 when x = 12. Find y when x = 60.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!