That you have thrown a ball with kinetic energy upwards at an increasing velocity rate
Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
The momentum of an object is given by the product between its mass and its velocity:

where m is the mass and v the velocity.
For the object in our problem, m=10 kg and v=10 m/s, therefore its momentum is

So, the correct answer is B).
The ball will decelerate as it moves upwards.
The magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
The given parameters;
- initial velocity of the ball, u = 1.25 m/s
- time of motion of the ball, t = 4.22 s
As the ball rolls up the inclined plane, the velocity decreases and eventually becomes zero when the ball reaches the highest point of the plane.
Thus, the ball decelerate as it moves upwards.
The acceleration of the ball is calculate as;

<em>at the highest point on the incline plane, the final velocity </em>
<em> is zero</em>

Thus, the magnitude of the ball's acceleration is 0.3 m/s² and it directed backwards.
Learn more here:brainly.com/question/23860763
Answer:
A) volume flow rate = 0.047 m3/s
B) mass flow rate = 39.01 kg/s
Explanation:
Detailed explanation and calculation is shown in the image below