Answer: A projectile is any object in which the only force is gravity
Explanation: Equations on how to calculate projectile velocity is stated below:
The initial velocity Vo being a vector quantity, has two componentsVox and Voy
V0x = V0 cos(θ)
V0y = V0 sin(θ)
The acceleration A is a also a vector with two components Axand Ay given
Ax = 0 and Ay = - g = - 9.8 m/s2
Along the x axis the acceleration is equal to 0 and therefore the velocity Vx is constant
Vx = Vocos(θ)
Along the y axis, the acceleration is uniform and equal to - g and the velocity at time t is g
Vy = Vo sin(θ) - g t
Along the x axis the velocity Vx is constant and therefore the component x of the displacement is
x = Vocos(θ) t
Along the y axis, the motion is of uniform acceleration and the y component of the displacement is
y = Vo sin(θ) t - (1/2) g t2
Answer:

Explanation:
The capacitance of the parallel-plate capacitor is given by

where
ϵ0 = 8.85x10-12 C2/N.m2 is the vacuum permittivity
k = 3.00 is the dielectric constant
is the area of the plates
d = 9.00 mm = 0.009 m is the separation between the plates
Substituting,

Now we can calculate the energy of the capacitor, given by:

where
C is the capacitance
V = 15.0 V is the potential difference
Substituting,

Answer:
Newton (N)
Explanation:
A newton is the unit of measurement for force
Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm