Answer:
-973 KJ
Explanation:
The balanced reaction equation is;
N2H4(aq) + 2Cl2(g) + 4OH^-(aq)---------> 4Cl-(aq) + 4H ^+(aq) + 4OH^-(aq) + N2(g)
Reduction potential of hydrazine = -1.16 V
Reduction potential of chlorine = 1.36 V
From;
E°cell= E°cathode - E°anode
E°cell= 1.36 - (-1.16)
E°cell= 2.52 V
∆G°=- nFE°cell
n= number of moles of electrons = 4
F= Faraday's constant = 96500 C
E°cell = 2.52 V
∆G°=- (4 × 96500 × 2.52)
∆G°= -972720 J
∆G°= -972.72 KJ
U-238
The number besides the U means its total molar mass. The molar mass of this element is 238
Molar mass= protons + neutrons
This means that 238= 146 + protons
Do 238 - 146
Answer is 92
The standard formation equation for glucose C6H12O6(s) that corresponds to the standard enthalpy of formation or enthalpy change ΔH°f = -1273.3 kJ/mol is
C(s) + H2(g) + O2(g) → C6H12O6(s)
and the balanced chemical equation is
6C(s) + 6H2(g) + 3O2(g) → C6H12O6(s)
Using the equation for the standard enthalpy change of formation
ΔHoreaction = ∑ΔHof(products)−∑ΔHof(Reactants)
ΔHoreaction = ΔHfo[C6H12O6(s)] - {ΔHfo[C(s, graphite) + ΔHfo[H2(g)] + ΔHfo[O2(g)]}
C(s), H2(g), and O2(g) each have a standard enthalpy of formation equal to 0 since they are in their most stable forms:
ΔHoreaction = [1*-1273.3] - [(6*0) + (6*0) + (3*0)]
= -1273.3 - (0 + 0 + 0)
= -1273.3
Answer:
An Arrhenius Base
Explanation:
The definition of this is a base that is a hydroxide ion donor.