1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
2 years ago
8

A box weighs 100N and its base area of 2 m2. What pressure does it exert on the ground?

Physics
1 answer:
kotegsom [21]2 years ago
5 0

Answer:

P = F/S = 100/2 =50 (N/m2)

You might be interested in
This diagram is a model of the nitrogen atom.
andrey2020 [161]
C.
Nitrogen has the atomic no. of 7 so the proton and the electron no. is 7.
Three more electrons are needed to fulfil the octet structure: 2,8
7 0
2 years ago
A boy reaches out of a window and tosses a ball straight up with a speed of 10 m/s. The ball is 20 m above the ground as he rele
kirill115 [55]

Explanation:

It is given that,

Speed of the ball, v = 10 m/s

Initial position of ball above ground, h = 20 m

(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :

\dfrac{1}{2}mv^2=mgh'            

h'=\dfrac{v^2}{2g}

h'=\dfrac{(10)^2}{2\times 9.8}

h' = 5.1 m

The maximum height above ground,

H = 5.1 + 20

H = 25.1 meters

So, the maximum height reached by the ball is 25.1 meters.

(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.

Hence, this is the required solution.                              

6 0
3 years ago
A 20~\mu F20 μF capacitor has previously charged up to contain a total charge of Q = 100~\mu CQ=100 μC on it. The capacitor is t
sertanlavr [38]

Explanation:

The given data is as follows.

       C = 20 \times 10^{-6} F

        R = 100 \times 10^{3} ohm

        Q_{o} = 100 \times 10^{-6} C

          Q = 13.5 \times 10^{-6} C

Formula to calculate the time is as follows.

          Q_{t}  = Q_{o} [e^{\frac{-t}{\tau}]

       13.5 \times 10^{-6} = 100 \times 10^{-6} [e^{\frac{-t}{2}}]

               0.135 = e^{\frac{-t}{2}}

         e^{\frac{t}{2}} = \frac{1}{0.135}

                         = 7.407

           \frac{t}{2} = ln (7.407)

                      t = 4.00 s

Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.

4 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
2 years ago
24) a plane takes off at 7:00 pm and lands at 1:00 am after travelling a distance of 4818km. what is the minimum number of times
12345 [234]

Answer:

Twice

Step-by-Step Explanation:

Time between 7:00 PM and 1:00 AM: 6 hours

Distance: 4818km

Since the distance is 4818km, and the time is 6 hours, you divide 4818 by 6.

803.0000015999 km/h.

The average speed is 803 km/h

Which considering the ideal case scenario if the plane starts at 0 reaches the speed of 803 and the end reduces its speed from 803 to 0. This means we have come across the value of 800 at least twice. Hence, the plane was travelling at a speed of 800 km/h at least 2 times.

7 0
1 year ago
Other questions:
  • Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
    13·2 answers
  • If the rocket burns its fuel in a time of 50.0 s and the relative speed of the exhaust gas is vex = 2100 m/s, what must the mass
    10·1 answer
  • What material most likely would form a aquiclude?
    14·1 answer
  • Suppose you are observing the interference pattern formed by a Michelson interferometer in a laboratory and a joking colleague h
    11·1 answer
  • What is the general equation for burning a source
    15·1 answer
  • What is hydrology?
    15·1 answer
  • The time it takes for a dragster to cross the finish line is unknown. The dragster accelerates from rest at 26 m/s2 for a quarte
    14·1 answer
  • All electric charge is based on the protons and electrons in atoms. true or false
    12·1 answer
  • In a fusion reactor, the high temperature of the order of 10 8 K is required in order that what condition is met
    9·1 answer
  • Metallic gold crystallizes in a face-centered cubic lattice, with one au atom per lattice point. if the edge length of the unit
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!