This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
Answer:
Explanation:
Given
Object is thrown with a velocity of 
Acceleration due to gravity is -g (i.e. acting downward)
Vertical distance traveled by object is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement
at maximum height final velocity is zero


time taken to reach maximum height
using
v=u+at
0=9-gt

Answer:10842.33m/s
Explanation:
F=qvBsine
V=f/(qBsine)
V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)
V=10842.33m/s
Answer:
Velocity = 3.25[m/s]
Explanation:
This problem can be solved if we use the Bernoulli equation: In the attached image we can see the conditions of the water inside the container.
In point 1, (surface of the water) we have the atmospheric pressure and at point 2 the water is coming out also at atmospheric pressure, therefore this members in the Bernoulli equation could be cancelled.
The velocity in the point 1 is zero because we have this conditional statement "The water surface drops very slowly and its speed is approximately zero"
h2 is located at point 2 and it will be zero.
![(P_{1} +\frac{v_{1}^{2} }{2g} +h_{1} )=(P_{2} +\frac{v_{2}^{2} }{2g} +h_{2} )\\P_{1} =P_{2} \\v_{1}=0\\h_{2} =0\\v_{2}=\sqrt{0.54*9.81*2}\\v_{2}=3.25[m/s]](https://tex.z-dn.net/?f=%28P_%7B1%7D%20%2B%5Cfrac%7Bv_%7B1%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B1%7D%20%29%3D%28P_%7B2%7D%20%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B2%7D%20%29%5C%5CP_%7B1%7D%20%3DP_%7B2%7D%20%5C%5Cv_%7B1%7D%3D0%5C%5Ch_%7B2%7D%20%3D0%5C%5Cv_%7B2%7D%3D%5Csqrt%7B0.54%2A9.81%2A2%7D%5C%5Cv_%7B2%7D%3D3.25%5Bm%2Fs%5D)
The answer to this question is dropping it on a hard surface.