Answer:
3.62m/s and 2.83m/s
Explanation:
Apply conservation of momentum
For vertical component,
Pfy = Piy
m* Vof (sin38) - m*Vgf (sin52) = 0
Divide through by m
Vof(sin38) - Vgf(sin52) = 0
Vof(sin38) = Vgf(sin52)
Vof (sin38/sin52) = Vgf
0.7813Vof = Vgf
For horizontal component
Pxf= Pxi
m* Vof (cos38) - m*Vgf (cos52) = m*4.6
Divide through by m
Vof(cos38) + Vgf(cos52) = 4.6
Recall that
0.7813Vof = Vgf
Vof(cos38) + 0.7813 Vof(cos52) = 4.6
0.7880Vof + 0.4810Vof = 4.
1.269Vof = 4.6
Vof = 4.6/1.269
Vof = 3.62m/s
Recall that
0.7813Vof = Vgf
Vgf = 0.7813 * 3.62
Vgf = 2.83m/s
Hey there Kendrell!
Yes, this is very true, when the car slows down, our bodies will tend to lean forward a little bit, and this is actually due to the "motion of inertia".
Inertia allows for this to happen, this is why in this case, we have this case.
Hope this helps.
~Jurgen
The answer is c you got to look for answers that make sense
Answer:
option (b)
Explanation:
Let the resistance of each resistor is R.
In series combination,
The effective resistance is Rs.
rs = r + R + R + .... + n times = NR
Let V be the source of potential difference.
Power in series
Ps = v^2 / Rs = V^2 / NR ..... (1)
In parallel combination
the effective resistance is Rp
1 / Rp = 1 / R + 1 / R + .... + N times
1 / Rp = N / R
Rp = R / N
Power is parallel
Rp = v^2 / Rp = N V^2 / R ..... (2)
Divide equation (1) by equation (2) we get
Ps / Pp = 1 / N^2
Answer:
The electric flux is zero because charge is zero.
Explanation:
Given that,
Positive charge 
Negative charge 
We need to calculate the total charged
Using formula of charge

Put the value into the formula


We need to calculate the electric flux
Using formula of electric flux

Put the value into the formula

Hence, The electric flux is zero because charge is zero.