Answer:
Mass of Jupiter = 4.173×10^15kg
Explanation:
Using Kepler's 3rd law, it states that the orbital period T is related to the distance,r as:
T^2 = GM/4 pi × r^3
Where G = universal gravitational constant
r = radius
M = masd of jupiter
Rearranging the formular to make M the subject of formular
T^2 × 4 pi = G M × r^3
(T^2 × 4 pi) / (G× r^3) = M
(1.24^2 × 4 × 3.142) /(6.672×10^-11)(4.11×10^8)^3
M = 19.32 /6.672×10^-11)(4.11×10^8)^3
M = 19.32 / 4.63 ×10^15
M = 4.173×10^15kg
Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
F = m*a, mass times acceleration.
F = 15*10 = 150 N
Known variables
d=4.6m
initial velocity=0m/s
downward acceleration=-9.8m/s2
d=1/2gt2
4.6=1/2 -9.8 t2
t=0.93s