Electromagnectic Waves Travel In A Vacuum
200n because it's 2×5=10so maybe try solving the problem like that ok does that help
Answer:
a) - 72.5°c
b) pressure = 3625.13 Pa
c) density = 0.063 kg/m^3
d) it is a subsonic aircraft
Explanation:
a) Determine Temperature
Temperature at 19.5 km ( 19500 m )
T = -131 + ( 0.003 * altitude in meters )
= -131 + ( 0.003 * 19500 ) = - 72.5°c
b) Determine pressure and density at 19.5 km altitude
Given :
Po (atmospheric pressure at sea level ) = 101kpa
R ( gas constant of air ) = 0.287 KJ/Kgk
T = -72.5°c ≈ 200.5 k
pressure = 3625.13 Pa
hence density = 0.063 kg/m^3
attached below is the remaining part of the solution
C) determine if the aircraft is subsonic or super sonic
Velocity ( v ) =
=
= 283.8 m/s
hence it is a subsonic aircraft
Answer:
Explanation:
Speed of skier without parachute
= √ 2gh
= √ 2 x 9.8 x 35
= 26.2 m / s
Speed of skier with parachute
net force downwards
mg - 200
= 60 x 9.8 -200
= 388 N
acceleration = 388 / 60
a = 6.47 m / s
v = √ 2ah
= √ 2 x 6.47 x 35
= 21.28 m / s
Answer:
0.98kW
Explanation:
The conservation of energy is given by the following equation,


Where
Mass flow
Specific Enthalpy (IN)
Specific Enthalpy (OUT)
Gravity
Heigth state (In, OUT)
Velocity (In, Out)
Our values are given by,




For this problem we know that as pressure, temperature as velocity remains constant, then


Then we have that our equation now is,


