Answer:
2.52 g NaCl
Explanation:
(Step 1)
To find the mass, you first need to find the moles NaCl. This value can be found using the molarity ratio:
Molarity = moles / volume (L)
After you convert mL to L, you can plug the given values into the equation and simplify to find moles.
136.9 mL / 1,000 = 0.1369 L
Molarity = moles / volume
0.315 M = moles / 0.1369 L
0.0431 = moles
(Step 2)
Now, you can use the molar mass to convert moles to grams.
Molar Mass (NaCl): 22.990 g/mol + 35.453 g/mol
Molar Mass (NaCl): 58.443 g/mol
0.0431 moles NaCl 58.443 g
------------------------------ x ------------------- = 2.52 g NaCl
1 mole
Answer:
hi! I'm pretty sure your answer is solvent!
Explanation:
not 100% sure but I looked it up on google. solvent does the dissolving, solute is what is being dissolved, and a solution is the solvent + the solute. hope this helped!
<span>Average oxidation state = VO1.19
Oxygen is-2. Then 1.19 (-2) = -2.38
Average oxidation state of V is +2.38
Consider 100 formula units of VO1.19
There would be 119 Oxide ions = Each oxide is -2. Total charge = -2(119) = -238
The total charge of all the vanadium ions would be +238.
Let x = number of of V+2
Then 100 – x = number of V+3
X(+2) + 100-x(+3) = +238
2x + 300 – 3x = 238
-x = 238-300 = -62
x = 62
Thus 62/100 are V+2
62/100 * 100 = 62%
</span>62 % is the percentage of the vanadium atoms are in the lower oxidation state. Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.