Answer:
90 °C
Explanation:
First, we must know the specific heat capacity of water, which is defined as the energy required to heat 1 gram of water by one degree Celsius. The specific heat capacity of water is 1 cal·g⁻¹°C⁻¹.
The equation we will use is Q = mcΔt, where Q is the heat energy, m is the mass, c is the specific heat capacity, and Δt is the temperature change. We will rearrange the equation to solve for Δt and substitute the values:
Δt = Q / (mc) = (90 kcal)(1000 cal/kcal) / (1 kg)(1000 g/kg)(1 cal·g⁻¹°C⁻¹) = 90 °C
Answer:
1.25 hours or 75 minutes or 1 hour and 15 minutes
Explanation:
Yes. If this is the balanced equation:
AlCl3 + 3Na —— 3NaCl + Al
then Al was reduced from a 3+ oxidation (to neutralize the 3- from the chlorine) to a 0 oxidation (elemental ground state).
OH- is the ion that increases the concentration of a base