Answer:
1.654 atm.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
P₁ = 1.0 atm, T₁ = 25°C + 273 = 298 K,
P₂ = ??? atm, T₂ = 220°C + 273 = 493 K,
- Applying in the above equation
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
<em>∴ P₂ = (P₁T₂)/(T₁) </em>= (1.0 atm)(493 K)/(298 K) = <em>1.654 atm.</em>
The answer is d cuz it’s doesn’t make a lot of the formula
.86km is the correct answer
Answer: This was because the experiment showed that a substance could emit radiation even while it was not exposed to light.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
<h3>What is energy?</h3>
Energy is the ability to do work.
The primary source of energy on the earth is the sun.
The energy from the sun is used by producers to produce food on which other organisms depend on.
The energy from the sun gets to the humpback whale through producers such as plankton.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
Learn more about energy flow at: brainly.com/question/21786633