Answer:
The unknown substance is Aluminum.
Explanation:
We'll begin by calculating the change in the temperature of substance. This can be obtained as follow:
Initial temperature (T₁) = 25 ⁰C
Final temperature (T₂) = 100 ⁰C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 100 – 25
ΔT = 75 ⁰C
Finally, we shall determine the specific heat capacity of the substance. This can be obtained as follow:
Change in temperature (ΔT) = 75 ⁰C
Mass of the substance (M) = 135 g
Heat (Q) gained = 9133 J
Specific heat capacity (C) of substance =?
Q = MCΔT
9133 = 135 × C × 75
9133 = 10125 × C
Divide both side by 10125
C = 9133 / 10125
C = 0.902 J/gºC
Thus, the specific heat capacity of substance is 0.902 J/gºC
Comparing the specific heat capacity (i.e 0.902 J/gºC) of substance to those given in the table above, we can see clearly that the unknown substance is aluminum.
A hypothesis is a proposed explanation made on the basis of limited information while a theory is a series of ideas intended to explain something.
Answer:
Rest and motion are relative terms. In simple terms, an object that changes its position is said to be in motion while the opposite action causes an object to be at rest.
Explanation:
The answer is A. meters (m)
Answer: A negatively-charged ion always has more electrons than protons
Explanation:
First, we know that the elementary negative charge is the electron, while the positive one is the proton. Such that both have the same charge in magnitude, but a different sign. Such that if we have the same number of electrons and protons in an atom, the charge of this atom will be neutral.
And an ion is an atom with a different number of electrons and protons, so the charge of the atom is not neutral.
Then if we have a negatively-charged ion, the charge of this atom is negative. Then we must have a larger number of electrons (the negative ones) than protons (the positive ones)
Then the correct option is:
A negatively-charged ion always has more electrons than protons