Answer:
impulse = 8820 kg·
or 8820 N·s
Explanation:
Impulse J is equal to the average force
multiplied by the elapsed time Δt or in equation form, J =
Δt
As long as your force of 450 N is constant then that value is your average force
and your elapsed time is 19.4 seconds.
Multiply these values.
You will get an impulse of 8820 kg·
or 8820 N·s.
Answer:
Honestly i think the answer is B
Explanation:
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
Explanation:
We have,
Speed of plane a is 900 km/h
Plane b is moving at a rate of 
It is required to find which plane is faster. To find which plane is faster, we need to compare their speeds.
Speed of a plane a is 900 km/h and that of plane b is 50 km/h. So, we can say that plane a is moving faster.