Answer:
Even though the cross-sectional area of each capillary is extremely small compared to that of the large aorta, the total cross-sectional area of all the capillaries added together is about 1,300 times greater than the cross-sectional area of the aorta because there are so many capillaries
Explanation:
The best activity for her to do to improve her range of motion is flexibility.
<h3>What are a few range of motion illustrations?</h3>
The term the range of motion (ROM) describes the extent to which a joint or muscle may be moved or stretched. Everybody has a distinct experience. For instance, whereas some people can perform a complete split, others cannot because their joints are stiff and their muscles are unable to extend as far.
<h3>What restricts motion range?</h3>
A joint is said to have a restricted range of motion when it cannot move easily and completely in its typical position. A mechanical issue within the joint, swollen tissues around the joint, or pain may restrict motion.
To knoiw more about range of motion visit:
brainly.com/question/13403291
#SPJ1
Answer:
W = - 5.01 10¹⁰ J
Explanation:
Work is defined by the expression
W = ∫ F.dr
Where the blacks indicate vectors, in the case the force is radial and the distance is also radial, whereby the scalar producer is reduced to an ordinary product
W = ∫ F dr
W = G m₁m₂ ∫ 1 /r² dr
W = G m₁ m₂2(-1 / r)
We evaluate between the lower limits r = Re and upper r = ∞
W = G m₁m₂ (-1 / Re + 1 / ∞)
W = - G m₁ m₂ / Re
Let's calculate
W = - 6.67 10⁻¹¹ 800 5.98 10²⁴ / 6.37 10⁶
W = - 5.01 10¹⁰ J
Answer:
The gravitational force is related to the mass of each object.
The gravitational force is an attractive force.
Explanation:
Gravitational force is a long range force of attraction between any two masses.
Mathematically given as :

where:
are the masses
r= distance between the center of mass of the two objects.
G= gravitational constant = 
From the above relation of eq. (1) it is clear that,
Gravitational force is inversely proportional to the square of the distance and directly proportional to the masses.
The mass of an object is independent of its size due to the fact that density may vary for different objects.
The force of gravity varies with height as:

where:

gravity at height
of the center of mass of the object from the center of mass of the earth.
and we know that force:

where: m= mass of the object.