The correct answer is C. Atoms are incredibly small and can bearly be seen with the most powerful electron microscopes. The nucleas of an atom contains protons and neutrons with electrons in orbitals around the nucleas. I hope this helps. Let me know if anything is unclear.
The best and most correct answer among the choices provided by the question is the second choice.
Carbon can easily bond with other atoms because it is an organic element.
I hope my answer has come to your help. God bless and have a nice day ahead!
Answer:
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions
Explanation:
We will first write the balanced equation for this scenario
3 CaCl2 + 2 Na3PO4 ----> 6 NaCl + Ca3 (PO4)2
3 Mg(NO3)2 + 2 Na3PO4 -----> 6 NaNO3 + Mg3 (PO4)2
The ratio here for both calcium chloride and magnesium nitrate is 
The number of moles of each compound is equal to
Using the mole ratio of 3:2, convert each to moles of sodium phosphate.
mole of CaCl2 is equal to
Na3PO4
mole of CaCl2 is equal to
Na3PO4
Converting moles of sodium phosphate to grams of sodium phosphate we get
g/mol
grams of sodium phosphate must be added to 1.4 L of this solution to completely eliminate the hard water ions
First and foremost, they are completely different substances with each exhibiting unique properties. Both have different atoms involved on their structures which is the cause of the differing properties.
Answer:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring = 8 g/mL
Explanation:
From the question given above, the following data were obtained:
Mass of ring = 32 g
Volume of water = 64 mL
Volume of water + ring = 68 mL
Density of ring =?
Next, we shall determine the volume of the ring. This can be obtained as follow:
Volume of water = 64 mL
Volume of water + ring = 68 mL
Volume of ring =?
Volume of ring= (Volume of water + ring) – (Volume of water)
Volume of ring = 68 – 64
Volume of ring = 4 mL
Finally, we shall determine the density of the ring. This can be obtained as follow:
Mass of ring = 32 g
Volume of ring = 4 mL
Density of ring =?
Density = mass / volume
Density of ring = 32 / 4
Density of ring = 8 g/mL