The volume (in mL) of 0.242 M NaOH solution needed for the titration reaction is 39.44 mL
<h3>Balanced equation </h3>
CH₃CH₂COOH + NaOH —> CH₃CH₂COONa + H₂O
From the balanced equation above,
- The mole ratio of the acid, CH₃CH₂COOH (nA) = 1
- The mole ratio of the base, NaOH (nB) = 1
<h3>How to determine the volume of NaOH</h3>
- Volume of acid, CH₃CH₂COOH (Va) = 46.79 mL
- Molarity of acid, CH₃CH₂COOH (Ma) = 0.204 M
- Molarity of base, NaOH (Mb) = 0.242 M
- Volume of base, KOH (Vb) =?
MaVa / MbVb = nA / nB
(0.204 × 46.79) / (0.242 × Vb) = 1
Cross multiply
0.242 × Vb = 0.204 × 46.79
Divide both side by 0.242
Vb = (0.204 × 46.79) / 0.242
Vb = 39.44 mL
Thus, the volume of NaOH needed for the reaction is 39.44 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
E = hf
E = hc/lamda
where E-energy,
h-planck's constant (6.62 x 10^-34 Js)
f- frequency ( f = c/lamda)
c-velocity of light ( 3 x 10^8 m/s)
lamda- wavelength
you can this formula to solve all the 4 questions.
Answer is: Increased pressure would increase the rate of forming water vapor.
According to Le Chatelier's Principle, the position of equilibrium moves to counteract the change, the position of equilibrium will move so that the concentration of products (water waper) of chemical reaction increase, if:
1) decrease temperature, because this is exothermic reaction (ΔH is negative).
2) increase concentration of reactants (oxygen and hydrogen).
3) increase pressure of the system, so reaction moves to direction where is less molecules.
Answer:
hello hope this helps :)
a pure substance consists only of one element or one compound. a mixture consists of two or more different substances, not chemically joined together.
Explanation: