Answer:
The First answer is C Digestion changes proteins into amino acids
And the secoud answer is D pancreas
Answer:
mRNA must start membrane protein in the cytoplasm and, after that, continue it in the rough ER.
Explanation:
Protein synthesis is initiated when mRNA meets a free ribosome, the primary structure for protein synthesis. Ribosomes can be found in the r<em>ough endoplasmic reticulum</em> or floating in the cytosol. They read the mRNA code and add the correct amino acid using transference RNA to build the protein.
The <u>rough endoplasmic reticulum</u> is in charge of the synthesis and transport of the membrane proteins. It is also in charge of the latest protein modifications after transduction. Synthesis of membrane proteins <u>starts in the cytoplasm</u> with the production of a molecule portion known as a signal sequence. This portion leads the synthesizing protein and associated ribosome to a specific region in the Rough endoplasmic reticulum where it continues the protein building.
Membrane proteins are synthesized in the endoplasmic reticulum and <em>sent to the Golgi complex in vesicles</em>, where it happens the final association of carbohydrates with proteins. Finally, protein is transported <em>from the Golgi complex to its final destiny, the membrane. </em>
Answer:
The humble sunflower appears not quite of this earth. Its yellow crowned head sits atop its stalk like a green broomstick. Its seeds, arranged in a logarithmic spiral, are produced by tiny flowers called disc florets that emerge from the center of its head and radiate outward. But aside from being a biological marvel, the sunflower is also often in the scientific spotlight.
From understanding how new plant species emerge to studying “solar tracking,” which is how the flowers align themselves with the sun’s position in the sky, sunflowers are a darling in the field of science. However, researchers can only get so far in understanding a plant without detailed genetic knowledge. And after close to a decade, it has finally unfurled itself.An international consortium of 59 researchers who set their sights on the laborious task of sequencing and assembling the sunflower’s genome published their results in a 2017 study in Nature. This achievement will provide a genetic basis for understanding how the sunflower responds and adapts to different environments. “We are on the cusp of understanding sunflower adaptability,” says Loren Rieseberg, a leading sunflower expert at the University of British Columbia and a supervisor of this study.
With its genome assembled, scientists are hopeful for the next phase of the sunflower’s scientific career: as a “model crop” for studying climate adaptability in plants. This task is more complex and urgent now than ever. Climate change, according to a paper in the Annals of Botany, “will influence all aspects of plant biology over the coming decades,” posing a threat to crops and wild plants alike.
Answer:
D) In DNA, adenine, thymine, guanine, and cytosine join together and carry all of the genetic information. RNA is made from adenine, uracil, cytosine, and guanine and is used to make proteins.