Answer:
The pH of the sweater containing Hydrogen ion concentration
is
<u>8</u>
<u></u>
Explanation:
pH = It is the negative logarithm of activity (concentration) of hydrogen ions.
pH = -log([H+])
Now, In the question the concentration of [H+] ions is :
![[H^{+}]=1\times 10^{-8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B-8%7D)

use the relation:


pH = 8
Note : <em><u> 1 times 10 to the power of 8 must be" 1 times 10 to the power of -8"</u></em>
If the concentration is
![[H^{+}]=1\times 10^{8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B8%7D)
Then pH = -8 , which is not possible . So in that case the pH calculation is by other method
Answer:
2/3
Explanation:
Crystals structures can also be seen when two elements combines together and the perfect example is Al₂O₃ which is given in the question above. Just like it is given in the question above, the kind of arrangement in the crystal structure for Al₂O₃ is called HCP which stands for Hexagonally Closed Pack.
The aluminum ions which is in form of Al³⁺ occupies the two-third[2/3] positions while the position that the oxygen ion occupies is one[1].
The answer is 4.
Gases have low densities, because of the increased space between hight-energy particles.
The balanced equation for the neutralisation reaction is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
the number of moles of NaOH reacted - 0.126 mol/L x 0.0173 L = 0.00218 mol
if 2 mol of NaOH reacts with 1 mol of H₂SO₄
then 0.00218 mol of NaOH reacts with - 0.00218 / 2 = 0.00109 mol of H₂SO₄
molarity is the number of moles of solute in 1 L solution
therefore if 25 mL contains - 0.00109 mol
then 1000 mL contains - 0.00109 mol / 25 mL x 1000 mL = 0.0436 mol/L
therefore molarity of H₂SO₄ is 0.0436 M
Answer:
2.17
Explanation:
To calculate pH using the hygrogen ion concentration we must use the following formula:
- log (H+) = pH
All we have to do now is plug in our hygrogen ion concentration and put it in our calculator.
- log (6.8 × 10⁻³) = 2.17
Don't forget proper figures for pH!