Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E


where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.



343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Answer:
1.552 moles
Explanation:
First, we'll begin by writing a balanced equation for the reaction showing how C8H18 is burn in air to produce CO2.
This is illustrated below:
2C8H18 + 25O2 -> 16CO2 + 18H2O
Next, let us calculate the number of mole of C8H18 present in 22.1g of C8H18. This is illustrated below:
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 = 22.1g
Mole of C8H18 =..?
Number of mole = Mass /Molar Mass
Mole of C8H18 = 22.1/144
Mole of C8H18 = 0.194 mole
From the balanced equation above,
2 moles of C8H18 produced 16 moles of CO2.
Therefore, 0.194 mole of C8H18 will produce = (0.194x16)/2 = 1.552 moles of CO2.
Therefore, 1.552 moles of CO2 are emitted into the atmosphere when 22.1 g C8H18 is burned
Answer:
hey listen I'll hate to take the pts and go but I have to do what a man have to do
Answer:
A
Explanation:
The dissolving process depends on the interaction between solute and solvent (solvation) and the breaking up of the intermolecular bond between solutes. The former is exothermic in nature, while the later is endothermic. Energy is released when solute-solvent particles interact. When this energy exceeds the energy required to break intermolecular bonds between the solute particles, dissolution is exothermic.
Answer:
Solution 1.
Explanation:
We can find the concentration of a solution by looking at the ratio of the components.
In the first solution, there is a 500 mL:100g ratio. In the second, there is a 500mL:90g ratio. The greater ratio, or the ratio with a greater amount of solute in proportion to the water, is the first.