Answer: look at the close because that is the answer
Explanation:
We are told that KOH is being used to completely neutral H₂SO₄ according to the following reaction:
KOH + H₂SO₄ → H₂O + KHSO₄
If KOH can completely neutralize H₂SO₄, then there must be an equal amount of moles of each as they are in a 1:1 ratio:
0.025 L x 0.150 mol/L = .00375 mol KOH
0.00375 mol KOH x 1 mole H₂SO₄/1 mole KOH = 0.00375 mol H₂SO₄
We are told we have 15 mL of H₂SO₄ initially, so now we can find the original concentration:
0.00375 mol / 0.015 L = 0.25 mol/L
The concentration of H₂SO₄ being neutralized is 0.25 M.
Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume of gas = 804 mL
Initial temperature = 27°C (27+273=300 K)
Final temperature = ?
Final volume = 402 mL
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = V₂T₁/V₁
T₂ = 402 mL × 300 K / 804 mL
T₂ = 120,600 mL.K / 804 mL
T₂ = 150 K
CH₄ + 2O₂ → CO₂ + 2H₂O
From the equation, we know that methane and carbon dioxide have the same number of moles.

no. of moles of CO₂ produced = no. of moles of methane
= 4.5 × 10⁻³ ÷ (12 + 1×4)
= 2.8125 × 10⁻⁴
∴ mass of CO₂ = 2.8125 × 10⁻⁴ × (12 + 16×2)
= 12.375 × 10⁻³ g