Answer: a network of several radio telescopes wired together
Explanation:
A radio interferometer combines signals of several radio telescopes which are used in astronomical observations simultaneously to simulate a discretely-sampled single telescope of very large aperture
Interferometer, an instrument that uses the interference patterns formed by waves to measure certain characteristics of the waves themselves or of materials that reflect, refract, or transmit the waves. Interferometers can also be used to make precise measurements of distance.
Answer:
The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Explanation:
From the question we are told that
The distance between earth and Retah is 
Here c is the peed of light with value 
The time taken to reach Retah from earth is 
The velocity of the spacecraft is mathematically evaluated as

substituting values


The time elapsed in the spacecraft’s frame is mathematically evaluated as

substituting value
![T = 90000 * \sqrt{ 1 - \frac{[2.4*10^{8}]^2}{[3.0*10^{8}]^2} }](https://tex.z-dn.net/?f=T%20%20%3D%20%2090000%20%2A%20%20%5Csqrt%7B%201%20-%20%20%5Cfrac%7B%5B2.4%2A10%5E%7B8%7D%5D%5E2%7D%7B%5B3.0%2A10%5E%7B8%7D%5D%5E2%7D%20%7D)

=> 
So The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Answer:
I think it's how far out the water goes from the beach before the tsunami because before tsunami usually the water goes back way behind the tide before tsunami and that tells them everything they need I think
Answer:
t< 75 nm
Explanation:
A soap bubble is a thin film where when the beam enters the film it has a 180º phase change due to the refractive index and the wavelength changes between
λ = λ₀ / n
In the case of constructive interference in the curve of the spherical film it is
2 nt = (m + ½) λ₀
Where t is the thickness of the film and n the refractive index that does not indicate that we use that of water n = 1.33, m is an integer. The thickness of the film for the first interference (m = 0) is
t = λ₀ / 4 n
A thickness less than this gives destructive interference.
Let's look for the thickness for the visible spectrum
Violet light λ₀ = 400 nm = 400 10⁻⁹ m
t₁ = 400 10⁻⁹ / 4 1.33
t₁ = 75.2 10-9 m
Red light λ₀ = 700 nm = 700 10⁻⁹ m
t₂ = 700 10⁻⁹ / 4 1.33
t₂ = 131.6 10⁻⁹ m
Therefore, for all wavelengths to have destructive interference, the thickness must be less than 75 10⁻⁹ m = 75 nm
b) a film like eta is very thin, it is achieved when gravity thins the pomp, but any movement or burst of air breaks it,