D=rt
when biker A catches biker B, the time they've been riding is the same, so
t=t, or d/r=d/r
the rates are 6.4 and 4.7, so
d/6.4=d/4.7
biker B is 34m ahead, so
(d+34)/6.4=d/4.7
multiply both sides by 6.4*4.7:
4.7(d+34)=6.4d
4.7d+=6.4d+159.8
1.7d=159.8
d=94 meters
Another way to think of it is that biker A gains 1.7 meters on B every second (6.4-4.7=1.5), so the time it'll take for him to gain 34 meters is 34/1.7=20 seconds. In that time, biker B travels 4.7*20=94 meters
Answer:
0.0979 N/c
Explanation:
Electric field, E is given as a product of resistivity and current density
E=jP where P is resistivity and j is current density
But the current density is given as
where I is current and A is area and
Substituting this into the first equation then
Given diameter of 0.259 cm= 0.00259 m and the radius will be half of it which is 0.001295 m
Answer:
Explanation:
If you look closely, force 1 does not reach 0.2 until 0.4 force 2 reaches 0.2 at about 0.2 - hope that made sense :P
Answer:
f1 = -3.50 m
Explanation:
For a nearsighted person an object at infinity must be made to appear to be at his far point which is 3.50 m away. The image of an object at infinity must be formed on the same side of the lens as the object.
∴ v = -3.5 m
Using mirror formula,
i/f1 = 1/v + 1/u
Where f1 = focal length of the contact lens, v = image distance = -3.5 m, u = object distance = at infinity(∞) = 1/0
∴ 1/f1 = (1/-3.5) + 1/infinity
Note that, 1/infinity = 1/(1/0) = 0/1 =0.
∴ 1/f1 = 1/(-3.5) + 0
1/f1 = 1/(-3.5)
Solving the equation by finding the inverse of both side of the equation.
∴ f1 = -3.50 m
Therefore a converging lens of focal length f1 = -3.50 m
would be needed by the person to see an object at infinity clearly
Answer:
Explanation:
Q1 = 35 nC = 35 x 10^-9 C
m = 3.5 micro gram = 3.5 x 10^-9 Kg
d = 35 cm = 0.35 m
(a) The electrostatic force between the two charges is balanced by the weight of another charge.
F = m g
(b) By substituting the values
Q2 = 13.34 x 10^-12 C
Q2 = 0.0134 nC