Momentum would be the same before and after the collision
Before the collision:
Momentum of the single cart: 1 * 0.50 = 0.50
After the collision
velocity = 0.25m / s
1 * 0.25 + 1 * 0.25 =
0.25 * (1 + 1) =
0.25 * 2 =
0.50
Now new momentum will be 0.5
answer
the same before and after the collision
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²
a = 3.09 m/s²
<h3>Explanation</h3>
This question doesn't tell anything about how long it took for the car to go through 105 meters. As a result, the <em>timeless </em>suvat equation is likely what you need for this question.
In the <em>timeless</em> suvat equation,

where
is the acceleration of the car;
is the <em>final</em> velocity of the car;
is the <em>initial</em> velocity of the car; and
is the displacement of the car.
Note that <em>v</em> and <em>u</em> are velocities. Make sure that you include their signs in the calculation.
In this question,
Apply the <em>timeless</em> suvat equation:
.
The value of
is greater than zero, which is reasonable. Velocity of the car is negative, meaning that the car is moving backward. The car now moves to the back at a slower speed. Effectively it accelerates to the front. Its acceleration shall thus be positive.
1 astronomical unit 1 AU = 1.4960 * 10^11 meters
it is the average distance between earth and sun
mercury to sun distance is = 46,000,000 * 1000 meters
= 4.6 * 10^9 meters = 4.6 * 10^9 / 1.4960 * 10^11 AU
= 3.0.74 / 100 = 0.0374 AU
Answer:
(a) 5.43 x 10⁵ J
(b) 3.07 x 10⁵ J
(c) 45 °C
Explanation:
(a)
= Latent heat of fusion of ice to water = 3.33 x 10⁵ J/kg
m = mass of ice = 1.63 kg
= Energy required to melt the ice
Energy required to melt the ice is given as
= m
= (1.63) (3.33 x 10⁵)
= 5.43 x 10⁵ J
(b)
E = Total energy transferred = 8.50 x 10⁵ J
Q = Amount of energy remaining to raise the temperature
Using conservation of energy
E =
+ Q
8.50 x 10⁵ = 5.43 x 10⁵ + Q
Q = 3.07 x 10⁵ J
(c)
T₀ = initial temperature = 0°C
T = Final temperature
m = mass of water = 1.63 kg
c = specific heat of water = 4186 J/(kg °C)
Q = Amount of energy to raise the temperature of water = 3.07 x 10⁵ J
Using the equation
Q = m c (T - T₀)
3.07 x 10⁵ = (1.63) (4186) (T - 0)
T = 45 °C