Answer:


Explanation:
Given that
Q= 5 L/min
1 L = 10⁻³ m³/s
1 min = 60 s
Q=0.083 x 10⁻³ m³/s
d= 6 μm
v= 1 mm/s
So the discharge flow through one tube
q = A v


A=2.8 x 10⁻¹¹ m²
v= 1 x 10⁻³ m/s
q= 2.8 x 10⁻¹⁴ m³/s
Lets take total number of tube is n
Q= n q
n=Q/q


Surface area A
A= π d L


On the whole, the metals burn in oxygen to form a simple metal oxide. Beryllium is reluctant to burn unless it is in the form of dust or powder. Beryllium has a very strong (but very thin) layer of beryllium oxide on its surface, and this prevents any new oxygen getting at the underlying beryllium to react with it.
Answer: 115.2kg
Explanation:
Net force = 265 N
Acceleration of bike & rider = 2.30m/s2 (The SI unit of acceleration is m/s2)
Mass of the bike and rider together = ?
Since force is the product of the mass of an object and the acceleration by which it moves, Force = Mass x Acceleration
265N = Mass x 2.30m/s2
Mass = (265N/2.30m/s2)
Mass = 115.2 kg
Thus, the Mass of the bike and rider together is 115.2kg
Answer: according to the Avagadro's law, volume is directly propotional to no of moles: VXn
according to the Charles law, volume is directly propotional to temperatue: VXT
according to the Boyle's law, volume is inversely propotional to P: VX1/P
when we combine them we get:
VXnT1/P
V=knT/P
k= R(universal gas constant)
V=RnT/P
PV=nRT
Answer:
net power is + 2.25 D
Explanation:
Given data
distance vision = -0.25 D
near vision = + 2.50 D
to find out
net power
solution
we have given a person lens power for near is - 0.25 diopter and lens power for near power is +2.50 diopter so
net power is sum of both the power vision
so
net power = distance + near power
put both value we get net power
net power = ( -0.25 D) + ( + 2.50 D)
net power = + 2.25 D
so net power is + 2.25 D