Answer:
d = 421.83 m
Explanation:
It is given that,
Height, h = 396.9 m
Horizontal speed, v = 46.87 m/s
We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

Now d is the distance covered by the cannonball. So,

Hence, this is the required solution.
Answer:
The angular acceleration α = 14.7 rad/s²
Explanation:
The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod and L = length of rod = 4.00 m. α = angular acceleration of rod
Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.
So Iα = Wr
Substituting the value of the variables, we have
mL²α/12 = mgL/2
Simplifying by dividing through by mL, we have
mL²α/12mL = mgL/2mL
Lα/12 = g/2
multiplying both sides by 12, we have
Lα/12 × 12 = g/2 × 12
αL = 6g
α = 6g/L
α = 6 × 9.8 m/s² ÷ 4.00 m
α = 58.8 m/s² ÷ 4.00 m
α = 14.7 rad/s²
So, the angular acceleration α = 14.7 rad/s²
Answer:
o to increase the frequency of sound waves. It increases the sound waves to a level of frequency that humans cannot hear so you won't be able to hear many things though the wall other then low noises like pounding.
Explanation:
I am in construction class as well as a student teacher for other construction type programs trust me :D
Brainiest would be appreciated
Answer:
1027 N/C
3.42 x 10⁻⁶ T
Explanation:
I = Intensity of electromagnetic field = 1400 W/m²
E₀ = Maximum value of electric field
Intensity of electromagnetic field is given as
I = (0.5) ε₀ E₀² c
1400 = (0.5) (8.85 x 10⁻¹²) (3 x 10⁸) E₀²
E₀ = 1027 N/C
B₀ = maximum value of magnetic field
using the equation
E₀ = B₀ c
1027 = B₀ (3 x 10⁸)
B₀ = 3.42 x 10⁻⁶ T