The partial stress of H2 is 737.47 mmHg Let's observe the Ideal Gas Law to find out the whole mols.
We count on that the closed vessel has 1L of volume
- P.V=n.R.T
- We must convert mmHg to atm. 760 mmHg.
- 1 atm
- 755 mmHg (755/760) = 0.993 atm
- 0.993 m.1L=n.0.082 L.atm/mol.K .
- 293 K(0.993 atm 1.1L)/(0.082mol.K /L.atm).
- 293K = n
- 0.0413mols = n
These are the whole moles. Now we are able to know the moles of water vapor, to discover the molar fraction of it.
- P.V=n.R.T
- 760 mmHg. 1 atm
- 17.5 mmHg (17.5 mmHg / 760 mmHg)=0.0230 atm
- 0.0230 m.1L=n.0.082 L.atm/mol.K.293 K(0.0230atm.1L)/(0.082mol.K/L.atm .293K)=n 9.58 × 10 ^ 4 mols = n.
- Molar fraction = mols )f gas/general mols.
- Molar fraction water vapor =9.58×10^ -four mols / 0.0413 mols
- Sum of molar fraction =1
- 1 - 9.58 × 10 ^ 4 × mols / 0.0413 ×mols = molar fraction H2
- 0.9767 = molar fraction H2
- H2 pressure / Total pressure =molar fraction H2
- H2 pressure / 55mmHg = =0.9767 0.9767 = h2 pressure =755 mmHg.
- 737,47 mmHg.
<h3>What is a mole fraction?</h3>
Mole fraction is a unit of concentration, described to be identical to the variety of moles of an issue divided through the whole variety of moles of a solution. Because it's miles a ratio, mole fraction is a unitless expression.
Thus it is clear that the partial pressure of H2 is 737,47 mmHg.
To learn more about partial pressure refer to the link :
brainly.com/question/19813237
<h3 />
Answer:
C₂H₇F₂P
Explanation:
Given parameters:
Composition by mass:
C = 24%
H = 7%
F = 38%
P = 31%
Unknown:
Empirical formula of compound;
Solution :
The empirical formula is the simplest formula of a compound. To solve for this, follow the process below;
C H F P
% composition
by mass 24 7 38 31
Molar mass 12 1 19 31
Number of
moles 24/12 7/1 38/19 31/31
2 7 2 1
Dividing
by the
smallest 2/1 7/1 2/1 1/1
2 7 2 1
Empirical formula C₂H₇F₂P
Answer:
Explanation:
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged). Atoms have different properties based on the arrangement and number of their basic particles.