1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
8

Electrons carry energy from a battery to a lightbulb.

Physics
2 answers:
riadik2000 [5.3K]3 years ago
5 0
The correct answer among all the other choices is "None of the above." <span>Electrons carry energy from a battery to a light bulb. The electron's potential energy will be converted into light energy. </span>Thank you for posting your question. I hope this answer helped you. Let me know if you need more help. 
Gwar [14]3 years ago
4 0

Answer:

None of the above.

Explanation:

In a lightbulb, electrons at higher potential energy enter the lightbulb and give off that energy as they pass through the bulb. The number of electrons exiting and entering the bulb is the same. As electrons pass through the lightbulb, heat is produced due to the current,  this makes the filament of the lightbulb to incandescence, and that is the light we see.

You might be interested in
Please help ASAP! Due in 10 minutes. Will give Brainliest.
DedPeter [7]

Energy transfer is the changing of the form of energy. In this example, the form of energy changed from chemical, to kinetic, to gravitational, to then sound and internal energy.

7 0
3 years ago
Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One o
Zarrin [17]

Answer:

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

Explanation:

The metals distribute the charge on all surface when they touch the surface increases so that charge density decreases and when the charge is separated into smaller in each metal.

Let's apply this principle to our case.

One of the spheres is loaded with a charge q, when touching a ball its charge is reduced to 1 / 2q for each ball.

         qA = ½ q

         qB = ½ q

         qC = 0

The total charge is q

we make a second contact

If we touch the ball A again with the other sphere not charged C, the chare is distributed and when separated it is reduced by half

         qA = 1/2 (q / 2) = ¼ q

         qC = ¼ q

         qB = ½ q

At this point all spheres have a charge,

      qA = ¼ q

      qb = ½ q

      qC = ¼ q

The total charge is q

Now let's contact spheres B and one of the other two

       Q = ½ q + ¼ q = ¾ q

When splitting the charge

        qB = ½ ¾ q = 3/8 q

        qC = ½ ¾ q = 3/8 q

        qA = ¼ q

The total charge is q

Note that the total load is always equal to q

Now let's analyze the given configuration

Let's look for the total load

       Q = qA + QB + QC

       Q = ½ q + 3/8 q + ¼ q

        Q = 9/8 q

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

8 0
3 years ago
A lab cart with a mass of 15 kg is moving with constant velocity, v, along a straight horizontal track. A student drops a 2 kg m
lbvjy [14]

The equation 15v_{i} + 2*0 = (15 + 2)v_{f} (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.  

The horizontal momentum is given by:

p_{i} = p_{f}

m_{1}v_{1}_{i} + m_{2}v_{2}_{i} = m_{1}v_{1}_{f} + m_{2}v_{2}_{f}

Where:

  • m₁: is the mass of the lab cart = 15 kg
  • m₂: is the <em>mass </em>of the object dropped = 2 kg
  • v_{1}_{i}: is the initial velocity of the<em> lab cart </em>
  • v_{2}_{i}: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
  • v_{1}_{f}: is the final velocity of the<em> lab cart </em>
  • v_{2}_{f}: is the <em>final velocity</em> of the <em>object </em>

Then, the horizontal momentum is:

15v_{1}_{i} + 2*0 = 15v_{1}_{f} + 2v_{2}_{f}

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

15v_{1}_{i} + 2*0 = v_{f}(15 + 2)

Therefore, the equation 15v_{i} + 2*0 = (15 + 2)v_{f} represents the horizontal momentum (option 3).

Learn more about linear momentum here:

  • brainly.com/question/2141713?referrer=searchResults
  • brainly.com/question/2400186?referrer=searchResults

I hope it helps you!            

4 0
2 years ago
Provide a general expression to clearly describe how to use yourknowlegde of an atom's composition to determine the sign and mag
nikdorinn [45]
The net charge on an atom is equal to the overall difference between the number of protons in the nucleus versus the number of electrons around the nucleus, where a negative sign represents less protons and a positive sign represents more protons (than electrons).
7 0
3 years ago
A man starts from rest and accelerates at 4.00 m/s2. If he covers a distance of 525 m, how long does he accelerate?
rosijanka [135]

Answer:

16.2 s

Explanation:

Given:

Δx = 525 m

v₀ = 0 m/s

a = 4.00 m/s²

Find: t

Δx = v₀ t + ½ at²

525 m = (0 m/s) t + ½ (4.00 m/s²) t²

t = 16.2 s

5 0
2 years ago
Other questions:
  • What is a locus of points
    13·2 answers
  • Match the term to the correct description.
    15·1 answer
  • A diagram show how a converging lens can produce a real image and virtual image​
    11·1 answer
  • When Earth receives energy from the Sun, ____.
    7·2 answers
  • The number of energy levels to which an electron can jump depends on the
    11·1 answer
  • Intensity of light in SI system​
    15·1 answer
  • Describe Newton's law of gravitation and its application?​
    12·1 answer
  • 8.
    15·1 answer
  • A father (75 kg) was standing watching TV, minding his own business when one of his kids (20 kg) approached him at 2m/s heading
    15·1 answer
  • Given the velocity v= ds dt and the initial position of a body moving along a coordinate line, find the body's position at time
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!