Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m
Answer:

Explanation:
The torque of a force is given by:

where
F is the magnitude of the force
d is the distance between the point of application of the force and the centre of rotation of the system
is the angle between the direction of the force and d
In this problem, we have:
, the force
, the distance of application of the force from the centre (0,0)
, the angle between the direction of the force and a
Therefore, the torque is

Answer:
300 m
Explanation:
The train accelerate from the rest so u = 0 m/sec
Final speed that is v = 80 m/sec
Time t = 30 sec
The distance traveled by first plane = 1200 m
We know the equation of motion
where s is distance a is acceleration and u is initial velocity
Using this equation for first plane 

As the acceleration is same for both the plane so a for second plane will be 2.67 
The another equation of motion is
using this equation for second plane 
s = 300 m
Explanation :
A circuit is the representation of the path of the flow of current. The circuit can be either closed or open.
When the switch is off the circuit is closed circuit and when the switch is not connected the circuit is open.
The items that are sufficient to make a circuit are as follows :
- Voltage source like a battery.
- Resistors or electrical equipment like heater, motor etc.
Other components can be ammeter, voltmeter, ac source, variable resistors etc.