Resultant force is basically the force left after everything is added.
if a ball is being pushed one one side with 180N, and being pushed on teh opposite side with 84N (I added friction and air resistance since they're acting on the same side), then the resultant force would be:
180N - 84N =<u> 96N</u> (you can determine whether it's positive or negative based on the direction of the vector)
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

B. By vibrations in wires or strings
Answer:
At the instant shown in the diagram, the car's centripetal acceleration is directed is discussed below in detail.
Explanation:
The direction of the centripetal acceleration is in a circular movement is forever towards the middle of the roundabout pathway. In the picture displayed, the East direction is approaching the center. So, the course of the car's centripetal acceleration is (H) toward the east.
B. because protons and neutron are the sum of atomic mass of an element