Answer:
The force required to push to stop the car is 288.67 N
Explanation:
Given that
Mass of the car, m = 1000 kg
Initial speed of the car, u = 1 m/s
The car and push on the hood at an angle of 30° below horizontal, 
Distance, d = 2 m
Let F is the force must you push to stop the car.
According work energy theorem theorem, the work done is equal to the change in kinetic energy as :



The force required to push to stop the car is 288.67 N
 
        
             
        
        
        
A black hole is a cosmological object that is created when a massive star comes to the end of its life and collapses under its own gravity. Black holes have massive gravitational fields  that even light cannot escape beyond a certain distance. Before being engulfed, matter that is pulled into a black hole should become very hot and emit electromagnetic radiation. 
        
                    
             
        
        
        
Answer:
Ro = 7.8 [g/cm³]
Explanation:
According to the principle of Archimedes, the volume of a body immersed in a liquid is equal to the volume displaced by water. That is, in this problem The displacement volume is equal to the new volume minus the original volume.
![V_{n}=110[cm^{3} ]\\V_{o}=100[cm^{3} ]\\V_{d}=110-100 = 10 [cm^{3} ]](https://tex.z-dn.net/?f=V_%7Bn%7D%3D110%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bo%7D%3D100%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bd%7D%3D110-100%20%3D%2010%20%5Bcm%5E%7B3%7D%20%5D)
We now know that density is defined as the relationship between mass and volume.

where:
Ro = density [g/cm³]
m = mass = 78 [g]
Vd = displacement volume [cm³]
![Ro = 78/10\\Ro = 7.8 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%20%3D%2078%2F10%5C%5CRo%20%3D%207.8%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
 
        
             
        
        
        
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material. 
- The denser the material the slower the light will move through associated with considerable diffraction angles. 
- The lighter the material the faster the light pass through the material without being diffracted as much. 
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium. 
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :
                          
- The index of refraction of the liquid is n = 1.33 equivalent to that of water.    
           
 
        
                    
             
        
        
        
Answer:
Hydraulic pressure exerted on glass slab, ρ=10 atm
Bulk modulus of glass, B=37×10^9 Nm^−2
 
Bulk modulus, B=P/(ΔV/V)
where, 
ΔV/V= Fractional change in volume
ΔV/V=P/B
 =10×1.013×10^5 /(37×10 ^9)
 
 =2.73×10^-5
 
Therefore, the fractional change in the volume of the glass slab is 2.73×10^-5
 Hope it helps