Answer:
Explanation:
As the circuit is parallel, then there is no effect of other branches as the potential difference across each arm is same.
Answer:
v₀ = 13.9 10³ m / s
Explanation:
Let's analyze this exercise we can use the basic kinematics relationships to love the initial velocity and the acceleration we can look for from Newton's second law where force is gravitational attraction.
F = m a
G m M / x² = m dv / dt = m dv/dx dx/dt
G M / x² = dv/dx v
GM dx / x² = v dv
We integrate
v² / 2 = GM (-1 / x)
We evaluate between the lower limits where x = Re = 6.37 10⁶m and the velocity v = vo and the upper limit x = 2.50 10⁸m with a velocity of v = 8.50 10³ m/s
½ ((8.5 10³)² - v₀²) = GM (-1 /(2.50 10⁸) + 1 / (6.37 10⁶))
72.25 10⁶ - v₀² = 2 G M (+0.4 10⁻⁸ - 1.57 10⁻⁷)
72.25 10⁶ - v₀² = 2 6.63 10⁻¹¹ 5.98 10²⁴ (-15.3 10⁻⁸)
72.25 10⁶ - v₀² = -1.213 10⁸
v₀² = 72.25 10⁶ + 1,213 10⁸
v₀² = 193.6 10⁶
v₀ = 13.9 10³ m / s
<span>Ohm's law deals with the relation between
voltage and current in an ideal conductor. It states that: Potential difference
across a conductor is proportional to the current that pass through it. It is
expressed as V=IR.
V = IR
200 = 20R
R = 10 ohms</span>
If I am not wrong i thinks it is in the toroid uniforms
Answer:
Average acceleration on first part of the chunk is given as

Average acceleration on second part of the chunk is given as

Explanation:
By momentum conservation along x direction we will have

so we have


also by energy conservation






by solving above equation we will have


Average acceleration on first part of the chunk is given as


Average acceleration on second part of the chunk is given as

