it just depends on the situation some times yes sometimes no
Answer:
4.17 m/s
Explanation:
To solve this problem, let's start by analyzing the vertical motion of the pea.
The initial vertical velocity of the pea is

Now we can solve the problem by applying the suvat equation:

where
is the vertical velocity when the pea hits the ceiling
is the acceleration of gravity
s = 1.90 is the distance from the ceiling
Solving for
,

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

Therefore, the speed of the pea when it hits the ceiling is

Answer:
2361 Newtons
Explanation:
From the second Newton's law of motion;
F = ma
In this case;
we are given;
Mass as 9.5 g
Initial speed as 0 m/s
Final velocity as 650 m/s
Distance is 0.85 m
Using the equation;
V² = U² + 2as
But u = 0
v² = 2as
Therefore;
a = v² ÷ 2s
= 650² ÷ 2(0.85)
= 248,529.40 m/s²
But;
F = ma
= 0.0095 kg × 248,529.40 m/s²
= 2361 Newtons
Therefore;
The average net force required to accelerate the bullet is 2361 Newtons.
If you know 0 C= 32 F, it is greater at 48 F