From the case we know that:
- The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
- The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
- The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².
Please refer to the image below.
We know from the case, that:
m = 2M
r = R
m2 = 1/2M
distance between the center of mass to point P = p = R
Distance of the point mass to point P = d = 2R
We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:
Icm = 1/2mr²
Icm = 1/2(2M)(R²)
Icm = MR² ... (i)
Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:
Ip = Icm + mp²
Ip = MR² + (2M)R²
Ip = 3MR² ... (ii)
Then, the total moment of inertia of the disk with the point mass is:
I total = Ip + I mass
I total = 3MR² + (1/2M)(2R)²
I total = 3MR² + 2MR²
I total = 5MR² ... (iii)
Learn more about Uniform Flat Disk here: brainly.com/question/14595971
#SPJ4
Gas giants lol I'm love this kinda stuff nothing else just this question
Two things can happen to <u>old satellites</u>: For the closer satellites, engineers will use its last bit of fuel to slow it down so it will fall out of orbit and burn up in the atmosphere. Further satellites are instead sent even farther away from Earth.
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m