Answer:
1

2
The distance is
Explanation:
From the question we are told that
The maximum speed of the cheetah is 
The maximum of gazelle is 
The distance ahead is 
Let
denote the time which the cheetah catches the gazelle
Gnerally the equation representing the distance the cheetah needs to move in order to catch the gazelle is

=> 
=> 
=> 
Now at t = 7.5 s

=> 
=> 
=>
Hence the for the gazelle to escape the cheetah it must be 55.2 m
Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
Explanation:
Mass of baseball, m = 0.148 kg
Initial speed of the ball, u = 14.5 m/s
Final speed of the ball, v = 11.5 m/s
After crashing through the pane of a second-floor window, the ball shatters the glass as it passes through, and leaves the window at 11.5 m/s with no change of direction. So, the direction of the impulse that the glass imparts to the baseball is in opposite direction to the direction of the balls path.
The change in momentum of the ball is called impulse. It is given by :

Hence, this is the required solution.
The chicken's eggs are fertilized interally
I think its all four of them could be wrong but try all four !!!!!!