Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
Answer:
The axis of symmetry is 
Step-by-step explanation:
we know that
In a vertical parabola, the axis of symmetry is equal to the x-coordinate of the vertex
In this problem we have a vertical parabola open upward
The x-coordinate of the vertex is equal to the midpoint between the zeros of the parabola
so

therefore
The axis of symmetry is 
I believe the answer is 9, because 1/3 is .33 so 33%. so 33% is equal to 3 buttons and add another 66% which would be another 6 buttons would add up to 99% in all. after that I don't think they would add a quarter of a button.