Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.
Answer: an electromagnetic wave of a frequency between about 104 and 1011 or 1012 Hz, as used for long-distance communication.
Explanation:
H2O=18.01g/mole. 210g divided by 18.01g/mole=11.653mole. 1 mole has 6.22x10^23 molecules. So there is 11.653x(6.22x10^23) molecules. Just multiply 11.653 by 6.22. Then put it as answerx10^23 molecules
Answer:
B) 2Crº + 6e- --> 2Cr3+
Explanation:
The process of oxidation is where electrons are lost. Thus, out of the 2 ions that change charge(Cr and Cu), we must choose the one where the oxidation number increases(which means electrons are lost). Cr goes from an oxidation number of 0 to an oxidation number of 3+, while Cu goes from an oxidation number of 2+ to 0. Thus, we are looking at the half reaction for Cr. Half reactions never have subtracting electrons, so the answer must be B. I am assuming that last plus should be a -->
<h2><u>QUE</u><u>STION</u></h2>
It refers to a charged particle or atom.
<h2><u>CHOI</u><u>CES</u></h2>
<u>A.</u><u> </u><u>molecule</u>
B. bromine
C. potassium
D. sulfur
<h2><u>ANSWER</u></h2>
<h3><u>C</u><u>.</u><u> </u><u>pottasium</u></h3>