Answer:
Greater
Explanation:
The longer the handle, the greater the mechanical advantage and the greater the increase in force that is applied to the bolt.
Mechanical advantage is the rate at which force is multiplied.
- It simply compares the output force to the input force.
- M.A is the force increasing tendency of a tool.
- The longer the handle, the more the mechanical advantage and the lesser the applied force.
Answer:
[Ar] 3d10 4s2 4p3 is shorthand, 1s22s22p63s23p63d104s24p3 long hang
Explanation:
The shorthand is made using the lowest & closest noble gas, and picking up where it leaves off as follows, and longhand is made from a followed pattern you can easily find
This is called the pedigree chart.
Answer : The energy removed must be, 29.4 kJ
Explanation :
The process involved in this problem are :

The expression used will be:
![Q=[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{fusion}]+[m\times c_{p,s}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=Q%3D%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2B%5Bm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%5D%2B%5Bm%5Ctimes%20c_%7Bp%2Cs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released for the reaction = ?
m = mass of benzene = 94.4 g
= specific heat of solid benzene = 
= specific heat of liquid benzene = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![Q=[94.4g\times 1.73J/g.K\times (279-322)K]+[94.4g\times -125.6J/g]+[94.4g\times 1.51J/g.K\times (205-279)K]](https://tex.z-dn.net/?f=Q%3D%5B94.4g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28279-322%29K%5D%2B%5B94.4g%5Ctimes%20-125.6J%2Fg%5D%2B%5B94.4g%5Ctimes%201.51J%2Fg.K%5Ctimes%20%28205-279%29K%5D)

Negative sign indicates that the heat is removed from the system.
Therefore, the energy removed must be, 29.4 kJ