<span>It generally does not mean that there is double the oxygen, but in this case there is double, because the subscript number tells how many atoms of that element are in a particle. In this case, there are two of the oxygen, hence the DI-oxide verbiage, and one of the carbon. When there is only one, it's MONOxide, to indicate only one atom.</span>
Answer:
C
Explanation:
Alcohols are organic molecules characterized majorly by the presence of the OH group in their molecule. The OH group is majorly responsible for several of their characteristics. This include the formation of hydrogen bonds between alcohol molecules. While this makes them more inorganic than most organic compounds, comparatively the hydrogen bonding formed in alcohols is not as strong as that which is present in water.
The higher strength of the hydrogen bonding is responsible for some comparable properties. While water boils at a temperature of 100 degrees Celsius, alcohol boils at a temperature of 78 degrees Celsius. This is an evidence to the fact that hydrogen bonding in alcohol is less stronger that that in water.
Answer:
0.8749 grams of hydrogen gas was formed from the reaction.
Explanation:
P = Pressure of hydrogen gad= 744 Torr = 0.98 atm
(1 atm = 760 Torr)
V = Volume of hydrogen gas= 11 L
n = number of moles of hydrogen gas= ?
R = Gas constant = 0.0821 L.atm/mol.K
T = Temperature of vapor = 27.0 °C = 300.15 K
Putting values in above equation, we get:
Using an ideal gas equation:


n = 0.4374 moles
Mass of 0.4374 moles of hydrogen gas:
0.4374 mol × 2 g/mol = 0.8749 g
0.8749 grams of hydrogen gas was formed from the reaction.
Answer:
a. Heterogeneous
b. Homogeneous
c. Homogeneous
d. Heterogeneous
e. Heterogeneous
Explanation:
A heterogeneous mixture is a mixture in which you can see multiple different ingredients in, for example vegetable soup, tea with ice and lemon slices, or fruit salad.
A homogeneous mixture is a mixture in which you can only see one thing, for example tea, seawater, or milk.
Answer:
Start with the number of grams of each element, given in the problem. the mass of each element = the percent given. Convert the mass of each element to moles using the molar mass from the periodic table. Divide each mole value by the smallest number of moles calculated.